
Contents lists available at ScienceDirect
Journal of Quantitative Spectroscopy &
Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer 173 (2016) 1–6
http://d
0022-40

n Corr
E-m
journal homepage: www.elsevier.com/locate/jqsrt
Thermal emission by a subwavelength aperture

Karl Joulain a,n, Younès Ezzahri a, Rémi Carminati b

a Institut Pprime, Université de Poitiers-CNRS-ENSMA, 86000 Poitiers, France
b ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France
a r t i c l e i n f o

Article history:
Received 18 September 2015
Received in revised form
16 December 2015
Accepted 18 December 2015
Available online 2 January 2016

Keywords:
Nanoscale Thermal emission
Phonon-polaritons
Fluctuational electrodynamics
x.doi.org/10.1016/j.jqsrt.2015.12.013
73/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail address: karl.joulain@univ-poitiers.fr (K. J
a b s t r a c t

We calculate, by means of fluctuational electrodynamics, the thermal emission of an
aperture separating from the outside, vacuum or a material at temperature T. We show
that thermal emission is very different whether the aperture size is large or small com-
pared to the thermal wavelength. Subwavelength apertures separating vacuum from the
outside have their thermal emission strongly decreased compared to classical blackbodies
which have an aperture much larger than the wavelength. A simple expression of their
emissivity can be calculated and their total emissive power scales as T8 instead of T4 for
large apertures. Thermal emission of disk of materials with a size comparable to the
wavelength is also discussed. It is shown in particular that emissivity of such a disk is
increased when the material can support surface waves such as phonon polaritons.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since the end of the 19th century and the work of Max
Planck, it has been known that thermal emission of
radiation follows universal laws. For instance, the emissive
power of a body at temperature T cannot exceed the value
given by the so-called Stefan law, that reads as
H0ðTÞ ¼ σT4, with σ ¼ 5:67 10-8 Wm�2 K�4. Another fea-
ture is that the thermal emission spectrum is broadband
and peaked around λm (given by the Wien law
λmT ¼ 2898 μm K), with a typical bandwidth of a few λm.
However, theoretical models based on a fluctuational
electrodynamics formalism have shown that thermal
emission could deviate from the above-mentioned beha-
viors when the length scales involved are small compared
to the typical wavelength λm of the emitted radiation. For
example, when two heated bodies are separated by a small
gap, radiative heat transfer surpasses that predicted by
classical formulas, due to the coupling of evanescent
modes on the surface of each body [1,2]. Heat transfer is
oulain).
enhanced in this case, and can even be dominated by
transfer through modes at specific frequencies, especially
when the materials exhibit resonances such as surface
phonon or surface plasmon polaritons [3–6]. Moreover,
micro- or nanostructured surfaces, such as periodic grat-
ings, can scatter the thermally excited evanescent waves
into the far field, which substantially changes the emission
properties. This mechanism has paved the way towards
the design and fabrication of coherent thermal sources
exhibiting both temporal and spatial coherence [7].
Another way to couple the near field and the far field is to
use the tip of a Scanning Near-Field Optical Microscopy
and bring it at a submicron distance from the heated
surface. The thermally populated evanescent modes can be
coupled to a detector in the far field by scattering at the
tip. This process underlies the principle of Thermal
Radiation Scanning Tunneling Microscopy [8–10] (TRSTM),
an imaging technique among others [11], that uses thermal
radiation to perform imaging and spectroscopy of sub-
wavelength structures.

The purpose of this paper is to explore another aspect
of thermal emission at subwavelength scale. We study the
conceptually simple situation of thermal emission by an
aperture. Note that the problem could be addressed using
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the reciprocity theorem of electromagnetism. Indeed, in
the theory of thermal radiation, it is known that recipro-
city is the foundation of Kirchhoff's law, stating that the
emissivity of a material equals its absorptivity. This means
that knowing the absorption efficiency QabsðωÞ of a body at
a given temperature T, the thermally emitted flux by this
body at the same temperature and at frequency ω is given
by [12]

ϕ ω; Tð Þ ¼Qabs ωð Þ ℏω2

4π2c2½expðℏω=kbTÞ�1� ð1Þ

where ℏ is the reduced Planck constant and kb is Boltz-
mann's constant. Therefore, the knowledge of the light
absorption properties of an object at a given frequency
allows one to deduce its thermal emission properties. For
example, a sphere of a homogeneous material will emit
according to Eq. (1) with Qabs given by the Mie theory [13].

In this paper, we address the problem from a different
point of view. We use fluctuational electrodynamics in
order to compute directly the thermal emission by an
aperture. The principle of the approach is the following. In
a body at local thermal equilibrium, temperature initiates
fluctuating currents that radiates an electromagnetic field
[14]. Thermal currents are characterized statistically by a
correlation function given by the fluctuation-dissipation
theorem. Radiation by these currents is calculated by sol-
ving Maxwell's equations in the specific geometry, as in a
standard antenna radiation problem. Note that in the
specific case of an aperture, the emitted heat flux is given
by the flux of the Poynting vector through a plane parallel
to the aperture, allowing us to connect this flux to the
Wigner transform of the electric field spatial correlation
function [15–17]. These spatial correlations are directly
computed in fluctuational electrodynamics [18,19]. We
first focus on the simple case of an aperture separating
vacuum at thermal equilibrium from the outside. Then the
formalism is also applied to the case of an aperture
separating a material supporting resonant surface waves at
thermal equilibrium from the outside.
Fig. 1. Geometry of the model system. From the electromagnetic field in
the plane z¼ z0, one deduces the field and the radiated power in any
plane at a distance z.
2. Emissivity of an aperture

The system considered here is depicted in Fig. 1. A
semi-infinite material at temperature T fills the half-space
zo0, on top of which a mask with a transmission function
τðRÞ is placed in a plane z¼ z0, where z0-0. Thermal
radiation is emitted by the material through the mask, and
the radiated power is calculated in a plane at a distance z
through the evaluation of the flux of the Poynting vector
across this plane.

For monochromatic fields, the complex amplitude of
the electric field EðrÞ in the plane z can be written as a
plane-wave expansion in the form

E rð Þ ¼
Z

E K; z0ð ÞeiK�Reiγðz� z0Þd
2K

4π2 ð2Þ

where k¼ ðK; γÞ ¼ Ku? þγez , r¼ ðR; zÞ and γ2þK2 ¼ k20
with k0 ¼ω=c¼ 2π=λ. The amplitude EðK; z0Þ of the plane
waves in this expansion is the Fourier transform of the
field in the plane z¼ z0, and reads as

EðK; z0Þ ¼
Z

EðR0; z0Þe� iK�R0 d2R0: ð3Þ

The power ϕðωÞ radiated in the far field is defined as the
flux of the Poynting vector through the plane z. For
monochromatic fields, the time-averaged Poynting vector
is SðrÞ ¼ 1=2R EðrÞ �H�ðrÞ� �

, where HðrÞ is the complex
amplitude of the magnetic field and the superscript n

stands for complex conjugate. Using the Maxwell equation
∇� E¼ iωμ0H and the plane-wave expansion of the
electric field, one obtains

ϕ ωð Þ ¼ 1
2μ0ω

R

Z
γjE K; z0ð Þj2d

2K
4π2 : ð4Þ

Note that the integration is restricted to propagating
waves, i.e, waves for which Kok0 since RðγÞ ¼ 0 when
K4k0. In this case, this integration can also be understood
as an angular integration on the upper hemisphere of the
wavevector k with constant modulus jkj ¼ω=c.

Eq. (4) shows that the knowledge of the field in the
plane z¼ z0 permits an explicit calculation of the radiative
flux emitted in the far field. In our model, this field can be
understood as the field radiated by the semi-infinite
medium and transmitted through the aperture. Denoting
by Einc the field right before the plane of the aperture, and
describing the aperture (or actually any scattering object
placed in the plane z¼ z0) by a transmission matrix
τijðK;K0Þ, one can write the field in the plane z¼ z0 as

Ei K; z0ð Þ ¼
Z
τij K;K

0� �
Eincj K0; z0

� �d2K0

4π2 : ð5Þ

Inserting this expression into Eq. (4) leads to

ϕ ωð Þ ¼ 1
32μ0ωπ6

Z
γτij K;K

0� �
τ�ik K;K″� �

Eincj K0; z0
� �

Einc�k K″; z0
� �

d2K d2K0 d2K″

ð6Þ
The incident field can be calculated as the field radiated

by the semi-infinite material in the absence of the aper-
ture (this is the simplest model, a self-consistent calcula-
tion being outside the scope of the present study). This
field is linearly related to the thermally excited electric
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currents inside the material, through a relationship of the
form

Einci ðrÞ ¼ iμ0ω
Z

d3r0Gimðr; r0Þjmðr0Þ ð7Þ

where G is the tensor Green function that describes the
electrodynamic response of the semi-infinite material and
j is the electric current density. The Green function in this
geometry can be written as a plane-wave expansion that
involves the Fresnel transmission factors at the interface
z¼0 between the medium and vacuum [20]. According to
this expansion, the incident electric field reads

Einci rð Þ ¼ �μ0ω
8π2

Z
d3r0 d2K

γ2
eiŝts21 ŝþ p̂þ

1 tp21p̂
þ
2 em

h i
eiK�ðR�R0 Þeiγze� iγ2z0 jm r0ð Þ

ð8Þ

Einci rð Þ ¼
Z

Einci K; z0ð Þd
2K

4π2 ð9Þ

where ŝ ¼K=jKj � ez, p̂
þ
i ¼ K2ez�γiKxex�γiKyey

h i
=ðnik0KÞ,

and ts21 and tp21 are the Fresnel transmission factors for s
and p polarization, respectively [20]. By identification, one
obtains the expression of the Fourier transform of the
incident field in the plane z¼ z0:

Einci K; z0ð Þ ¼ �μ0ω
2

Z
d3r0

γ2
eiŝts21 ŝþ p̂þ

1 tp21p̂
þ
2 em

h i
e� iK:R0

eiγ1z0e� iγ2z0 jm r0ð Þ:

ð10Þ
The thermally excited currents are fluctuating fields that
are described statistically. In order to compute fluxes, one
needs second order quantities. The spatial correlation
function of the currents in the material at thermal equili-
brium is given by the fluctuation-dissipation theorem

〈jk r;ωð Þjl r0;ω0ð Þ〉¼ ϵ0I½ϵðωÞ�ωΘðω; TÞ
π

δklδ r�r0ð Þδ ω�ω0ð Þ
ð11Þ

where the brackets denote an average over thermal fluc-
tuations, Θðω; TÞ ¼ ℏω=½expðℏω=kbTÞ�1�, and ϵðωÞ is the
dielectric function of the medium. From Eqs. (6), (10) and
(11), one obtains the following expression of the thermally
radiated flux:

ϕ ω; Tð Þ ¼Θðω; TÞ
32π5

Z
d2Kd2K0γ Kð ÞRðγ2ðK0ÞÞ

jγ2ðK0Þj2 e
�2Iðγ1ðKÞÞz0τij K;K

0� �
τ�ik K;K0� �

� Ms
jkðK0ÞþMp

jkðK0Þ
� �

ð12Þ

where

Ms Kð Þ ¼ jts21j2
K2

K2
x �KxKy 0

�KxKy K2
y 0

0 0 0

0
B@

1
CA ð13Þ

and

Mp Kð Þ ¼ jtp21j2
jγ2j2þK2

jn2j2jn1j2k40K2

jγj2K2
x jγj2KxKy �γKxK

2

jγj2KxKy jγj2K2
y �γKyK

2

�γ�KxK
2 �γ�KyK

2 K4

0
BB@

1
CCA:

ð14Þ
Note that this final expression is restricted to positive
frequencies only (as is usual in radiative transfer), which
implicitly assumes that all fields in the derivation have
been replaced by their analytic signals (in practice this
results in an extra factor of 4, see [6] for details).

This expression of the radiated power appeals for the
definition of an effective emissivity. Indeed, in the frame-
work of geometrical optics, the emitted flux by an object
with surface S is usually written in the form

ϕ ω; Tð Þ ¼ ε
Θðω; TÞω2

4π2c2
S ð15Þ

where ε is by definition the emissivity of the object. From
Eq. (12) one can define the effective emissivity of the
aperture [or of any scattering object defined by a trans-
mission matrix τijðK;K0Þ] as

εeff ¼
1

8π3k20S

Z
d2K d2K0γ Kð ÞR½γ2ðK0Þ�

jγ2ðK0Þj2 e
�2I½γ1ðKÞ�z0τij K;K

0� �
τ�ik K;K0� �

� Ms
jkðK0ÞþMp

jkðK0Þ
h i

ð16Þ

This is the general expression of the emissivity of an
aperture defined by its transmission matrix τijðK;K0Þ. It
involves a double integral the transmission matrix over all
parallel wavevector. Integration over K is limited to pro-
pagative waves such as Krk0, whereas integration over K0

includes a priori both propagating ðK 0rk0Þ and evanescent
waves ðK 04k0Þ. The contribution of evanescent waves to
the radiated flux in the far field results from a scattering
process. The thermally excited evanescent waves with
large wavevectors K 04k0 are scattered into propagating
waves with Krk0 by scattering at the aperture. Another
feature of the expression of the effective emissivity is that
the material and geometrical resonances are contained in
the integral both in the transmission matrix τijðK;K0Þ and
the Fresnel transmission factors. Finally, note that due to
reciprocity, the expression of the emissivity can also be
seen as that of the absorption cross-section normalized by
the geometrical cross-section S.
3. Aperture in vacuum

As the simplest example, we consider the case of
blackbody radiation in a vacuum at temperature T trans-
mitted through an aperture in an opaque screen. In the
general model derived in the preceding section, this
amounts to considering a material with transmission fac-
tors ts and tp equal to unity. The radiative heat flux coming
out from the aperture can be calculated analytically in two
asymptotic cases. The first case corresponds to an aperture
with a radius r0 much larger than the typical thermal
wavelength. Under this assumption, one can make use of
the Kirchhoff approximation in which the field equals the
incident field in the aperture and vanishes outside. The
limit of validity of the Kirchhoff approximation is esti-
mated to be k0r0 � 6, which corresponds to an aperture
radius on the order of the wavelength [21]. Under this
assumption, the transmission matrix is reduced to a scalar
so that τijðK;K0Þ ¼ δijTðK�K0Þ, where

TðKÞ ¼
Z

TðRÞe� iK�Rd2R ð17Þ

and TðRÞ ¼ 1 inside a circle of radius r0 (the aperture) and
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TðRÞ ¼ 0 outside. An explicit calculation leads to

T Kð Þ ¼
Z 2π

0
dφ

Z r0

0
Re� iKR cos φ dR¼ 2π

Z r0

0
RJ0 KRð Þ dR

¼ πr20
2J1ðr0KÞ

r0K

� 	
: ð18Þ

Inserting this expression of the transmission matrix into
Eq. (12) allows in principle to calculate the radiated flux. It
is however easier to rewrite the flux as

ϕ ω; Tð Þ ¼Θðω; TÞ
16π5

Z
γðKÞ
γðK0ÞT R0� �

T R″� �
e� iðK�K0 Þ:R0

eiðK�K0Þ�R″
d2K d2K0 d2R0 d2R″

ð19Þ
and to perform the change of variables m¼ ðR0 þR″Þ=2 and
d¼ R0 �R″, leading to

ϕ ω; Tð Þ ¼Θðω; TÞ
16π5

Z
γðKÞ
γðK0ÞT mþd=2

� �
T m�d=2
� �

e� iðK�K0 Þ�d d2K d2K0 d2m d2d

ð20Þ
Since the product Tðmþd=2ÞTðm�d=2Þ is independent of
the variable m, the integration over m givesZ

T mþd=2
� �

T m�d=2
� �

dm¼

πr20W dð Þ ¼ πr20 �
2
π

arccos
d
2r0

� d
2r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

2r0

� 	2
s2

4
3
5: ð21Þ

Using spherical coordinates with angles θ and φ, one can
write k¼ ðK; γÞ ¼ k0ð sin θ cos φ; sin θ sinφ; cos θÞ and
transform the integral into

ϕ ω; Tð Þ ¼Θðω; TÞ
16π5 πr20k

4
0

Z
cos 2θ sin θe� ik0d sin θ cos φ

� sin θ0eik0d sin θ0 cos φ0
WðdÞ dθ dφ dθ0 dφ0 d2d

ð22Þ
which, after integration over azimuthal angles, gives

ϕ ω; Tð Þ ¼Θðω; TÞ
16π5 πr20k

4
04π

2
Z

cos 2θ sin θJ0 k0d sinθ
� �

sinθ0J0

�ðk0d sin θ0ÞWðdÞ dθ dθ0 d2d: ð23Þ
Integration over θ and θ0, knowing that d extends over a
disk of radius 2r0, leads to

ϕ ω; Tð Þ ¼Θðω; TÞk20
4π2 πr202

Z 2k0r0

0
W u=k0

� �
sin uF uð Þ du

¼ϕ0ðωÞ
Z 2k0r0

0
Wðu=k0Þ2 sin uFðuÞ du¼ϕ0ðωÞεeffvacðωÞ

ð24Þ
where FðuÞ ¼ ð sin u�u cos uÞ=u3. The last expression
defines the effective emissivity εeffvacðωÞ at frequency ω of a
blackbody of circular radius r0.

When the aperture is large compared to the wave-
length, thermal emission corresponds to a blackbody.
However, our result shows that the emissivity of an aper-
ture is smaller than 1 if the aperture size is on the order of
the wavelength. Pushing the Kirchhoff approximation at
its limit k0r0 ¼ 6, we obtain εeffvacC0:84. This can be easily
understood since waves with wavelengths on the order or
smaller than the aperture size can hardly be transmitted.
The aperture acts as a high pass filter, reducing the con-
tribution of low frequency waves, which is a feature of the
underlying diffraction process. However, it is known that
the Kirchhoff approximation breaks down when the
aperture size becomes smaller than the wavelength [21–
23], typically when k0r0o6. Bethe [22] and Bouwkamp
[23] have indeed shown that the transmission through a
small hole is actually weaker than that predicted by the
Kirchhoff approximation. The problem addressed by Bethe
and Bouwkamp's theory is that of transmission through a
hole in a perfectly conducting screen. By introducing fic-
titious magnetic charges and currents in the diffracting
hole satisfying boundary conditions on the screen, their
theory allows one to calculate the scattering cross-section
and the transmission matrix τðK;K0Þ in the regime k0r0⪡1.
One ends up with

jτsik K;K0� �j2 ¼ 64
9
k20r

6
0
cos 2 θ0

cos 2 θ
1� sin 2 θ cos 2 φ

� �
ð25Þ

for s polarization, and with

jτpik K;K0� �j2 ¼ 64
9
k20r

6
0
cos 2 θþ sin 2 θð cos 2 φþ1=4 cos 2 φ0Þ� sin θ cos φ sin θ0

cos 2 θ

ð26Þ
for p polarization. Let us note that the transmission matrix
is here limited to propagative waves ðK;K 0rk0Þ. Inserting
these two expressions into Eq. (12), one can perform the
integration over incoming and outgoing wavevectors (K
and K0), which for propagating waves amounts to inte-
grating over θ, φ, θ0 and φ0. This leads to the following
expression of the radiative thermal flux emitted by a
subwavelength hole:

ϕ ω; Tð Þ ¼ 16
27

k60r
6
0

π3 Θ ω; Tð Þ ¼ 64k40r
4
0

27π2 ϕ
0 ω; Tð Þ ¼ εeffϕ

0 ω; Tð Þ:
ð27Þ

This result shows that the effective emissivity of a sub-
wavelength hole is εeff ¼ 64ðk0r0Þ4=ð27π2Þ. As expected,
this emissivity is smaller than that predicted by the
Kirchhoff approximation, which predicts a scaling in k20r

2
0.

Note that the scaling in k40r
4
0 that is obtained for a sub-

wavelength hole is consistent with that expected for
Rayleigh scattering (i.e. scattering by particles much
smaller than the wavelength). This result confirms that
small apertures behave as high-pass filters regarding
thermal emission.

Expression (27) gives the radiative flux at a given fre-
quency ω. If the condition k0r0⪡1 is satisfied on the full
spectral range covered by thermal emission (typically
λm=2oλo5λm in terms of wavelengths), the spectrally
integrated flux can be calculated, and reads

ϕ¼
Z 1

0

16
27

k60r
6
0

π3 Θ ω; Tð Þ dω¼ 128r40π
4k8bT

8

405c6ℏ7 � πr20: ð28Þ

It is interesting to note that instead of following the usual
T4 law of free-space blackbody radiation, the power
emitted by a subwavelength blackbody follows a T8 law.
This means that for a given aperture size r0, when the
temperature is decreased so that λm is larger than r0, the
thermally emitted power decreases drastically, much fas-
ter than predicted by the usual Stefan–Bolztmann law. For
example, a hole with r0 ¼ 1 μm at 77 K (liquid Nitrogen
temperature) has an emissive power of 1.99 Wm�2



K. Joulain et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 173 (2016) 1–6 5
according to Stefan–Boltzmann law, and of
4.75�10�4 W m�2 according to the law derived in this
paper using the Bethe–Bouwkamp theory. Finally, let us
remark that deriving an analytical expression of the
emissivity in the intermediate regime k0r0 � 1 is out of
reach. In that case, one should follow approaches that have
been used, for example, to address the problem of extra-
ordinary transmission through subwavelength holes [24–
26] and compute the absorption efficiency, that directly
leads to the emissivity according to Kirchhoff's law.
Fig. 2. Emissivity vs angular frequency for a circular aperture filled of SiC
with a radius of 100 μm (plain) and with a radius of 10 μm (dashed).
4. Aperture filled with a material

In this section we address the thermal emission by an
aperture when the medium occupying the half-space zo0
is a real material (see the geometry in Fig. 1). This problem
cannot be solved in its full generality since there is no
exact expression of the transmission matrix τ valid for any
material. However, the Kirchhoff approximation can be
used as long as k0r0C6, and we limit the study to that
regime. This will allows us to highlight interesting phe-
nomena that occur when the aperture size approaches the
wavelength. Under the Kirchhoff approximation, the
emitted radiative flux reads

ϕ ωð Þ ¼ϕ0 ωð Þ
Z 2k0r0

0
W u=k0

� �
uF uð Þ du

�
Z 1

0

κJ0ðκuÞ dκffiffiffiffiffiffiffiffiffiffiffiffiffi
1�κ2

p 2� rsj2� rpj2
�� ����(

þ
Z 1

1

2κJ0ðκuÞ dκffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�1

p IðrsÞþð2κ2�1ÞIðrpÞ� �
e�2

ffiffiffiffiffiffiffiffiffiffi
κ2 �1

p
k0z

�
ð29Þ

where κ ¼ K=k0. This expression contains two contribu-
tions: the propagating wave contribution for κo1 and the
evanescent wave contribution for κ41. Let us first check
that from Eq. (29) one recovers the classical expression of
the radiative flux when the aperture size is much larger
than the wavelength. For a circular aperture, this corre-
sponds to the condition k0r0⪢1. Let us note that Wðu=k0Þ
decreases smoothly from 1 to 0 when u=k0 varies from 0 to
2r0. F(u) decreases fastly to 0 when u is large compared to
1. When k0r0⪢1, there is a domain in which u⪢1 and
u⪡2k0r0. In this domain, the upper bound of integration
over u in Eq. (29) can be replaced by 1, and Wðu=k0Þ can
be replaced by 1. Noting that

R1
0 uFðuÞJ0ðκuÞ du vanishes if

κ41 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�κ2

p
if κo1 [27], one retrieves that there is

no contribution of the evanescent waves to the emitted
flux for large apertures. Moreover, the expression of the
emitted flux equal the classical expression

ϕ¼ϕclas ¼ϕ0ðωÞ
Z 1

0
κ dκð2�jrsj2�jrpj2Þ ð30Þ

where the integral represents the emissivity of the mate-
rial. Note that this emissivity is equal to 1 when the Fresnel
reflection factors vanish, i.e. in the vacuum blackbody
radiation limit.

In the regime where k0r0 is not large compared to one,
the contribution of the evanescent waves is no more
negligible, and one has to integrate Eq. (29) numerically.
An interesting situation is that of a material supporting
surface waves, such as SiC, at the limit of validity of the
Kirchhoff approximation in terms of aperture size. In Fig. 2,
the effective emissivity (i.e. ϕ=ϕ0) is plotted versus fre-
quency around the surface-phonon polariton resonance of
SiC which occurs for λ¼ 10:6 μm. For an aperture with
radius r0 ¼ 100 μm filled with SiC, the emissivity is the
same as that obtained for a massive material. It is close to
one in a broad spectral range, except close to the surface-
polariton resonance for which the material is very reflec-
tive. For a radius r0 ¼ 10 μm, the emissivity is enhanced in
the spectral domain where SiC supports surface polaritons.
These surface polaritons are thermally excited and scat-
tered by the aperture, which adds new channels for far-
field thermal radiation. One can even observe an effective
emissivity larger than one around the surface polariton
resonance frequency. This means that the thermal emis-
sion of the aperture is larger that the blackbody emissive
power multiplied by the geometrical cross-section. A
radiometric interpretation is that the effective aperture
emission size is larger than it geometrical size. Using
reciprocity (or Kirchhoff's law), one can also understand
that the emissivity is equivalent to an absorption cross-
section, normalized by the geometrical section. It is actu-
ally well-known in scattering theory that scattering by
nano-objects or nano-antennas such as nano-spheres or
nano-cylinders leads to cross-section larger than the geo-
metrical size. This is the so-called antenna effect. Note
however that when the surface considered for thermal
emission becomes larger than the wavelength, there is no
way that this emission can surpass blackbody emissive
power. For example, it is not possible to make a macro-
scopic surface made of small aperture that overall would
surpass blackbody limit. There is therefore no violation of
the blackbody limit for macroscopic surface containing or
not subwavelength objects.
5. Conclusion

We have shown that thermal emission by a material
can be substantially modified by confining this material to
areas on the order or smaller than the typical emission
wavelength. The confinement acts as a high pass filter, that
changes the spectrum of thermal emission, as well as the
value of the effective emissivity. In the case of a
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subwalength hole, the effective emissivity has been cal-
culated using the Bethe–Bouwkamp model. It has been
shown that in this limit, the emissivity scales as k40r

4
0, and

that total emitted flux scales as T8, instead of the usual
blackbody T4 law. In the case of an aperture separating a
material supporting surface mode (such as surface-phonon
polaritons) from the outside, a contribution from evanes-
cent waves scattered by the aperture generates an
enhancement of the emissivity around the resonant fre-
quency. From a thermal engineering point of view, this
study shows that the design of subwavelength scattering
structures (the aperture being a simple example) could
allow one to produce thermal sources with high spatial
confinement and large efficiency at specific frequencies.
The design of more complex structures would require an
improvement of the theory to solve the full electro-
dynamic problem without requiring simple geometries or
crude approximations. This could be done using numerical
approaches already in use in nanophotonics, and in fluc-
tuating electrodynamics such as discrete dipole approx-
imation (DDA), finite-domain time difference (FDTD), or
rigorous coupled wave algorithm (RCWA), to cite a few.
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