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Abstract: In the past few years, data privacy legislation has hampered the ability of WiFi network
operators to count and map client activity for commercial and security purposes. Indeed, since client
device MAC devices are now randomized at each transmission, aggregating client activity using
management frames such as Probe Requests, as has been common practice in the past, becomes
problematic. Recently, researchers have demonstrated that, statistically, client counts are roughly
proportional to raw Probe Request counts, thus somewhat alleviating the client counting problem,
even if, in most cases, ground truth measurements from alternate sensors such as cameras are
necessary to establish this proportionality. Nevertheless, localizing randomized MAC clients at a
network site is currently an unsolved problem. In this work, we propose a set of nine tools for
extending the proportionality between client counts and Probe Requests to the mapping of client
densities in real-world outdoor WiFi networks without the need for ground truth measurements. The
purpose of the proposed toolkit is to transform raw, randomized MAC Probe Request counts into a
density map calibrated to an estimated number of clients at each position.

Keywords: audience monitoring; GDPR; MAC randomization; probe request; WiFi; localization

1. Introduction

Since the introduction of commercial WiFi networks over twenty years ago, there has
been considerable interest in determining the locations of users of the service for commercial
purposes such as client counting and monitoring, as well as for safety and security concerns.
Localization is typically performed by leveraging the physical properties of a client’s WiFi
signals, such as the Received Signal Strength (RSS), at several network Access Points (APs).
Most systems make use of the abundant Probe Request (PR) frames emitted regularly
by client devices even when not connected to a network [1–5]. Sophisticated WiFi client
localization interfaces have now become commonplace worldwide. Sections 1.1–1.5 provide
historical and technological background on the current status of the field.

1.1. Client Monitoring for Business Metrics

Footfall, also known as client counting or simply traffic, is a measure of the number of
visitors entering a commercial site, such as a retail shop, commercial center, museum, and
so on. Footfall counts have been used for decades to help retailers and site managers gauge
the attractiveness of their offers and improve the overall customer experience. Initially
an affair of simple hand clickers, turnstiles, or weight-sensitive mats placed in doorways,
footfall has evolved into what is today considered a key business metric that is usually
obtained using more sophisticated techniques such as still and video surveillance cameras,
Passive InfraRed (PIR) thermal detectors, active infrared Time of Flight (ToF) imagers, WiFi,
and others. Data from the sensors is typically transferred via an internet protocol to be
stored and analyzed on a server. Realtime footfall statistics have now become a valuable
business analytics input, useful not only for retail and marketing analysis, but also in
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so-called Smart Building and Smart City applications, including energy use monitoring,
people flows, and safety and security concerns.

1.2. Wireless Client Monitoring

While radio-based client-held devices such as audio-guides have been in use for a
number of years, when cellphones became popular in the 1990s, interest in exploiting the
connectivity of these devices for footfall applications began to grow. With the arrival of
smartphones and their nearly unanimous adoption by consumers, however, the prospect
of an active WiFi/Bluetooth Network Interface Card (NIC) in the pocket of every single
customer led to a paradigm shift in mobile client monitoring. Indeed, while many of the
footfall tools mentioned in the previous section are still alive and well, there has been a
veritable explosion in the use of wireless technologies for collecting client activity data.
Beyond simple client counting, wireless also allows a means of localizing clients via an
analysis of the strength of their radio signals. Thus, by leveraging ubiquitous internet-
enabled client devices and an existing wireless network, wireless client monitoring can
be much less dependent on specialized hardware, novel expertise, and labor-intensive
deployment, calibration, operation, and maintenance, when compared to surveillance
cameras, infrared sensors, or legacy footfall solutions.

Driven by a desire for ubiquitous connectivity, Wireless Local Area Networks (WLAN)
using WiFi, or in some cases, Bluetooth technologies, are today found in almost all public
commercial areas, with city-wide WiFi coverage rapidly becoming the norm. Many of the
well-known personal localization services, such as Google Maps and others, exploit existing
WiFi and Bluetooth networks, together with GPS signals, for navigation and orientation
in indoor and outdoor spaces. From the standpoint of client monitoring, however, it
is generally the WiFi signals generated by the smartphones themselves, captured at the
network APs, that are of principal interest for counting and localization purposes.

Indeed, in order to assure rapid access to the ambient wireless networks, the WiFi
NICs found in smartphones emit on a regular basis certain Control Frames that establish
a list of available networks and announce the device’s presence and its capabilities. Of
particular interest is the Probe Request (PR) frame, mentioned earlier, emitted on the
order of 500 times in a 24 h period by a typical NIC [1,2], even when not connected to a
network, that identifies the client to the service provider via the NIC’s unique Medium
Access Address, or MAC. Nowadays, all major wireless network manufacturers, such as
Cisco/Meraki and CommScope/Ruckus, to name just two, commercialize sophisticated,
turnkey WiFi client monitoring and market analysis solutions for enterprises, commercial
centers, Smart Cities, etc., based on this model. Such systems feature real-time graphical
interfaces that display estimated client counts, traffic statistics, management parameters,
etc., for the different zones covered by the underlying network, providing footfall as well
as other business analytics of interest to the business managers deploying the software.

1.3. Data Privacy

Since 2016, however, with the advent of the European General Data Privacy Regulation,
or GDPR, and similar legislation elsewhere in the world, many of the opportunities for WiFi
client monitoring and localization have been jeopardized. To preserve clients’ identities,
Medium Access Control addresses are nowadays considered private information and must
be anonymized using a non-reversible hash function. As a given MAC address nevertheless
always hashes to the same token value, for further protection, all user WiFi devices being
manufactured today also attribute a new, randomized MAC address with each transmission.
WiFi service providers, consequently, are now faced with a plethora of PR signals without
any possibility of correlating them with the different clients, thus rendering invalid the
de-facto industry-standard wireless client monitoring model just described.
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1.4. Counting Randomized MAC WiFi Clients

Workarounds to the problem do exist. One is to use clues in the digital content of
received frames to effectively de-randomize PRs. A second is to concentrate on connected
clients who, by subscribing to the WiFi service, have consented to the use of their private
fixed MAC address. Both have important drawbacks, as will be discussed in Section 2.

Beyond the workarounds, though, in the past few years, researchers have developed
methods of estimating genuine client counts from MAC-randomized PR using statistical
methods. It is found that for sufficiently large client populations, the number of PRs is
linearly proportional to the true number of clients. The problem remaining then amounts
to determining the appropriate proportionality constant, which can be achieved either by
comparison to a ground truth obtained from other sensors, such as cameras, entry monitors,
etc., as in [6–8], or without ground truth, albeit with reduced accuracy, by exploiting
observed periodicities in plots of PR counts versus time [1]. This type of approach forms
the starting point for the mobile client localization techniques that will be developed in the
present work.

1.5. Localizing Anonymized WiFi Clients

If the problem of counting MAC-randomized clients is perhaps in the process of
being solved, following the observations in Section 1.4, assigning a location to a group of
anonymized clients presents a number of additional difficulties. Localization in wireless
networks has been an active field for a number of years, with a wide variety of techniques
proposed [9–13]. Using unassisted WiFi, positioning accuracies of about 2 m in indoor
scenarios or 10 m outdoors are possible when an adequate number of APs are involved. A
simple, popular, and effective method of localization in outdoor WiFi networks that adapts
readily to WiFi localization of smartphones is triangulation, in which a user’s position is
calculated from RSS values received simultaneously at three or more APs. Triangulation is
actually possible for a single randomized MAC PR since all APs receiving the PR produce
identical hash tokens. In practice, though, in many outdoor networks today, the main focus
is on providing connectivity, while the ability to also perform localization—which is more
expensive since it requires higher AP redundancy—remains of secondary importance. In
such a case, a substantial fraction of emitted PRs may be captured by only one or two
APs, making triangulation impossible. Furthermore, subsequent emissions will carry new,
unseen MAC address tokens, making it impossible to know if they arise from the same
device as the previous PR or from a different client.

Indeed, while positioning is by nature sub-optimal in networks where localization was
not an initial design priority, under GDPR, standard solutions become a priori impossible
for any but connected subscribers having fixed MAC addresses. As a result, tools for
performing localization despite these challenges, are today in substantial demand. The
goal of the present article is to propose a set of tools intended as a first step towards re-
establishing client monitoring for commercial and security purposes in an era when many
traditional approaches are no longer available.

1.6. A Proposed Toolbox

The article presents a set of nine tools designed to facilitate the preprocessing, display,
interpretation, localization, and counting of outdoor WiFi network clients based on raw
randomized MAC PR counts. The objective of the toolkit is to transform randomized MAC
Probe Request counts into a density map calibrated to the number of clients at each position.
In many instances, the mathematical machinery deployed in the tools is well established.
The contribution of the proposed work lies in assembling the necessary elements into a
coherent package to make sense of a complicated problem that many network operators
have dismissed as intractable. The toolkit contains the following:

- Preprocessing Tool for selecting client populations for study;
- “Bowl” Tool for displaying localization probability densities;
- Renormalization Tool for condensing distributed probabilities into decision regions;
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- Counting Tool for estimating the proportionality between PRs and clients;
- Filtering Tool for removing peaks in the density that obscure smaller scale structures;
- Localization Tool for device localization and calibration of the propagation model;
- Fiducial Tool for delineating client density regions;
- Drill-Down Tool for the study of client densities on different scales;
- Re-assembly Tool to create the final map calibrated for clients rather than PR.

Some of these are straightforward procedures, where the word “tool” may seem
excessive; for others, more involved, the label indeed applies. The “Bowl,” Filtering, and
Drilldown tools, for instance, employ relatively standard graphical methods, whereas the
Fiducial, Localization, Counting, and Renormalization tools are innovative and embody
much of the originality of the present work.

The remainder of the article is structured as follows. The next section gives an overview
of state-of-the-art WiFi networks in the era of GDPR and introduces the use of PR for client
monitoring. The problem of IoT in WiFi networks and the definition of the client classes
used in the article are provided in Section 3. Section 4 is a tutorial introduction to the
tools proposed, highlighting the ways in which they address problems of real-world WiFi
networks as well as the challenges posed by GDPR rules. Sections 5 and 6 showcase the
proposed localization tools through examples drawn from two real-world outdoor WiFi
datasets. Discussion, conclusions, and possible future directions appear in the final section.
Because of the tutorial nature of the article, certain techniques are first introduced in a
didactic fashion and returned to in detail in subsequent sections.

2. Related Work

As presented in Section 1.2, commercial WiFi localization solutions furnishing position-
dependent client analytics are today quite sophisticated; however, since the advent of the
GDPR, they are applicable only to clients who have formally subscribed to the WiFi service
and thus authorized the use of their private fixed MAC address.

As mentioned in Section 1.4, a way around this problem that has garnered considerable
attention is the so-called de-randomization approach for PRs. In this approach [14–26],
information from digital frame content such as the frame Sequence Number, particular
Information Elements (IE), Preferred Network List, and certain time delay measurements
derived from these quantities can be analyzed statistically to group together PRs arising
from a unique client, thus undoing the effect of the MAC randomization. Though rigorous
and often quite effective, a recognized drawback of this approach is that wireless device
manufacturers are perpetually on the lookout for such security loopholes, which the next
generation of devices is likely to close. A consensus is growing that data privacy is here to
stay and that researchers would do better to concentrate on intrinsically non-device-specific
privacy-preserving approaches. Indeed, this is the philosophy adopted in the present work
as well as in other recent contributions [1,6–8].

A second workaround amounts to monitoring only connected clients or others with
fixed MAC addresses. This choice, however, comes at a heavy price. In outdoor WiFi
networks, only a small percentage of clients nowadays choose to subscribe to the service,
preferring to rely on cellular telephone connectivity to access the internet. Indeed, the
authors of [5] report a fivefold increase in the percentage of randomized MAC clients, from
10% to 50%, between the years 2016 and 2018. In [1], fixed-MAC clients in 2020–2021 are
found not only to represent less than 10% of all PRs, but also to have significantly different
PR statistics compared to randomized MAC clients. This latter effect is explained by the
fact that a growing fraction of fixed MAC devices correspond either to Internet of Things
(IoT) devices or to human clients engaged in extended services such as Peer-to-Peer, both
of which produce uncharacteristically large numbers of PR [1].

A variant of this second workaround is to assume that the number of randomized MAC
clients amounts to some fixed fraction of the total number of clients. The authors of [27], for
example, are able to present a global chi-squared approach to outdoor localization, which in
fact shares some elements of the tools presented here but treats randomized MAC clients as
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an add-on to their analysis of fixed-address clients. For the reasons already stated, however,
this approach becomes less relevant as the percentage of randomized MAC clients grows.

Again, as introduced in Section 1.4, it has recently been demonstrated theoretically
in [1,6] and observed empirically in [1,6,8] that due to the statistical independence of the
client density and client device emission probability distributions, a simple proportionality
exists, in the limit of a large number of clients, between the number of randomized MAC
clients, C, and the corresponding number of randomized MAC PR, P, that is, C = P/X, where
the proportionality constant X is understood to be the mean device PR emission probability
for the time window concerned. This observation is currently the key to understanding
client numbers and client densities in the era of data privacy. It will be liberally exploited
in this work.

Though site-dependent, X for a time window of one day turns out to be of the order
of 500, as alluded to in Section 1.2. On the one hand, the appropriate value of X for a
particular site can be obtained using ground truth from alternate counting systems, such
as cameras. This was the technique employed in [6,8] for indoor localization in networks
having relatively high AP density and equipped with complementary ground truth sensors
located in the various zones covered by the WiFi network.

A second technique for obtaining X, albeit with reduced precision, is by estimating
it statistically from periodicities observed in the distribution of PR counts versus time,
as was reported in [1] for several low-AP count outdoor scenarios. The independence of
ground truth of this second method, despite its lesser precision, is quite interesting and
will be exploited in the present work. Indeed, the principal innovation in the present
work is to extend ground truth-free methods from simple client counting to outdoor client
density mapping, calibrated not in PR but in clients, based entirely on readily measurable
quantities and not requiring any auxiliary sensors, by employing a novel set of tools and
the instructions for applying them.

3. Datasets and Definitions

The proposed toolbox is presented first using the data sets used and some neces-
sary definitions.

3.1. Outdoor WiFi Network Data Sets Studied

The datasets studied include detailed, time-stamped PR records from public outdoor
WiFi networks at an outdoor tourist site, Site 1, and a campground, Site 2, both in France.
They are part of a larger data set, including the French city data introduced in [1]. Note that
for client counting purposes, there are some important differences between the present data
and the city data of [1] (to be discussed in Sections 3.2 and 6.1). As such, the two studies are
complementary. The data presented here were accumulated from the last week of March to
the end of June in 2021, giving total PR counts of 7.0 million for Site 1 and 5.3 million for
Site 2. A separate file stores connection detail records for clients who have at some point
formally signed into the WiFi service. The AP layouts of the sites appear in the figures in
the following sections. In accordance with the current European data privacy legislation,
all client MAC addresses are replaced by anonymized hash-coded strings.

3.2. Client Classes

By counting the number of times in a selected time window that a distinct anonymized
MAC is seen and comparing it to a threshold, and by also taking into account the connection
details file, PRs are identified as belonging to one of three classes:

• Client Randomized, CR The MAC string is seen from 1 to “threshold” times.
• Client Fixed, CF The MAC string is seen more than “threshold” times.
• Client Connected, CC The MAC string appears in the connection details file.
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Connected clients are separated out first, so that the classes are mutually exclusive.
These client class definitions are the same as those introduced in [1]. An important differ-
ence is that a threshold of 3 is chosen here, rather than 2 as in [1], which will turn out to be
a key element in some of the tools presented.

3.3. A Caveat: OUI and IoT

Despite randomization of the MAC, its first 3 bytes, called the Organizationally Unique
Identifier, or OUI, are retained and become part of a PR entry in the data record. The OUI is
intended to provide information on the manufacturer of the WiFi network card producing
the PR, available by interrogating a public OUI web repository. In practice, OUI responses
include a baffling array of manufacturers that are sometimes difficult to clearly identify.
A detailed investigation [1] suggests up to 80% are manufacturers of IoT devices such as
lighting, heating, cameras, etc., whose network behavior is quite distinct from that of true
client devices. These observations, aside from the issue of GDPR, provide another strong
motivation for basing crowd estimation solutions exclusively on CR-class clients, as these
almost certainly correspond to bona fide clients. In this article, all density estimates are
based on CR.

3.4. Preprocessing Tool

To prepare the data for the remaining steps in the toolbox, it is necessary to carry
out a preprocessing step based on the points outlined in Sections 3.1–3.3. In this article, a
baseline time window of three hours was chosen, long enough to provide a statistically
rich sample of thousands of PRs, yet short enough to enable following client behavior over
the course of a day. The CR category of client PRs is first selected by applying a threshold
of 3 to the number of times the PR MAC address appears in the selected data sample. This
eliminates subscribed clients as well as IoT devices, producing a sample of P randomized
MAC PRs that have each been seen one, two, or three times. As mentioned, P is usually a
number in the thousands here, which means that the huge bulk of MAC addresses are all
different due to the randomization at each new emission. Next counted is the number of
PRs seen three times in this sample, P3, after verifying that their timestamps are consistent
with near-simultaneous reception. We recall that the MAC of a PR received at multiple APs
will hash to the same result at all APs concerned. The quantities P and P3 will be important
later in the localization, counting, and reassembly steps.

4. Tutorial Introduction to the Proposed Toolbox

This section presents a tutorial-style introduction to some of the difficulties encoun-
tered in real-world outdoor WiFi network localization and the manner in which the pro-
posed tools can be brought to bear upon them. Note that the Preprocessing Tool was already
introduced in Section 3, while the treatment of the Fiducial, Drill-Down, and Reassembly
Tools will be reserved for Sections 5 and 6. The section begins with an introduction to
triangulation using received client RSS values.

4.1. Basics of Triangulation, Expected Positioning Accuracy

As outdoor WiFi networks cover extended areas, obtaining full coverage for both
traffic and localization is challenging. Numerous approaches based on RSS [9], Time of
Arrival (ToA) and its variants, or Channel State Information (CSI) are possible, either in
fingerprint or in ranging modes [10,12], or combined with GPS [13]. However, because of
its simplicity and widespread use, the focus here is on triangulation, also referred to as
trilateration.

The physical origin of the triangulation approach is embodied in the well-known Friis
equation relating RSS with distance:

RSS(dBm) = A(dBm) + 10n log10(d(m)) (1)
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Here, RSS is measured in dB with respect to 1 milliwatt (dBm), while the client
device-AP distance d is in meters. The constant A, also in dBm, is the emitted power
at 1 m from the client device—by industry standard, normally taken as −30 dBm. The
constant n is called the fading exponent. The Friis equation can be derived from first
principles for free space propagation, where power decreases as the inverse square of the
distance, giving n = 2. Propagation over a flat, unencumbered surface can also be shown to
produce n = 4. For intermediate situations with clutter and multipath effects, as expected
in outdoor WiFi networks, values in the range 2–3 are encountered, depending on the
particular environment.

Concerning positioning accuracy, while in indoor WiFi networks, where AP counts are
higher, a precision of± a few meters is typical, in a calibrated outdoor network, an accuracy
of ±10 m is already considered a good result. This observation will be an important
consideration in evaluating the viability of some of the tools proposed in the article.

4.2. Bowl Tool

Let us first consider a toy configuration with three APs in a triangular arrangement
as in Figure 1a. A client device somewhere within the triangle emits a PR that propagates
outward and is captured by each of the three APs in turn to produce RSS1, RSS2, and RSS3.
By inverting the Friis equation, one can calculate the distances R1, R2, and R3 from the
client device to each of the APs. By tracing circles with these radii, as in the figure, the
client device is located at the point where they intersect, indicated by a black star.
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An equivalent but somewhat more realistic simulation is shown in Figure 1b. In this
case, the anticipated uncertainty in measured RSS values is taken into account, which is
conventionally taken to have a Gaussian distribution with a variance of 2 dB. In this case,
given an RSS, a PR produces a spatial probability density distribution in the form of a
“bowl” whose radius is calculated using Friis and whose “lip thickness” is dictated by the
2 dB RSS uncertainty, translated, again through Friis, into a physical distance. The formula
for the bowl is then given by

f̂p(x, y) =
1

σ
√

2π
e
−(d−drssi)

2

2σ2 (2)

d =

√(
x− xap

)2
+
(

y− yap

)2
(3)

where f p is the bowl density function, σ is a distance variance parameter derived from the
2 dBm variance in RSS, drssi is the distance obtained from inverting Friis, x and y are the
coordinates of a point in the density map, and xap and yap are the coordinates of the AP.
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The form of the bowl function is illustrated in 2D projection and in 3D in Figure 2. The
integral of a bowl from a single PR over the x-y plane is, of course, normalized to a total
probability of 1.

Figure 2. Illustration of the bowl formula (a) in 2D projection and (b) in 3D.

To illustrate the use of the Bowl Tool, one returns to the toy example, overlaying, in
Figure 1b, the bowl densities from each of the three APs that received the emitted PR. In
the figure, the resulting sum of probabilities is coded according to a color bar. We note that
a red zone corresponding to the region where the “lips” of the three bowls overlap has
appeared. In practice, we are free to choose the threshold considered to best circumscribe
this region. The decision is now made, analogously to Figure 1a, that the PR has been
localized within the red region.

4.3. Renormalization Tool

To reflect this decision, the Renormalization Tool is applied by integrating all probabil-
ities outside the decision region and re-injecting them inside the region. The renormalized
selected zone appears in 2D in Figure 1c. This defines a small region that is believed to
contain a WiFi client. The integrated probability within the region is 3. Since it is clear,
in this case, that the three PRs were received simultaneously from a single emission, one
divides by 3 to obtain the number of clients, C = 1. Also appearing in Figure 1c is the
black star indicating the position determined from the intersection of the three circles in
Figure 1a. The two localization methods, i.e., the bowl density accumulation method and
the circle-intersection method, are in agreement, as they should be. This agreement between
the bowl density measurement and a localization by triangulation is a key element of the
approach, as will be detailed in Sections 5 and 6. The red zone is referred to as a “fiducial
region” for two reasons: (a) it is the zone having the highest probability of containing the
client; and (b) it is confirmed by triangulation. A return to the notion of a more generalized
fiducial region appears in Section 5. In passing, one might have considered multiplying
the probabilities of the three APs instead of adding them. In practice, however, this choice
proves problematic when dealing with large numbers of APs, some of which may be out of
range of one another.

In Figure 3, a new example illustrating some of the difficulties encountered in real-
world outdoor WiFi networks is introduced. Consider a cluster of 11 clients with positions
randomly distributed over some small region within the triangle formed by the APs. An
experiment is performed over a time window in which an average client device would emit
a single PR. Implicitly, this refers here to a mean PR emission probability, say X, averaged
over all types of devices and client activities, that is, X = 1 for the toy model for the chosen
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time window. The use of such an X is a core concept of the technique, to which we will
refer frequently. For this example, suppose that, due to propagation effects, the average
probability of a given AP receiving a client-emitted PR at this distance is about 1 in 3, such
that single AP receptions will dominate the experiment, but occasionally two or three APs
could be involved. Furthermore, let us suppose that as this time window evolves, five
clients each emit a PR that is received only at the leftmost AP, and five others emit a PR
that is received only at the rightmost AP. By superimposing the bowls corresponding to
these 10 PRs, one obtains the distribution in Figure 3a.
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Figure 3. (a) Summed probability bowl from 10 PRs emitted by 10 clients, with 5 received at the
left AP and 5 at the right AP. The choice of location for the clients is ambiguous (two red zones).
(b) An 11th client emits a PR that is received by all three APs, breaking the ambiguity. A black star
indicates the position of this PR obtained via triangulation. Its position agrees with that of the red
zone. (c) Renormalizing the probabilities into the central decision region, which has an integrated
probability of 13 PRs (6 from the left AP, 6 from the right AP, and 1 from the top AP).

The probability distribution in Figure 3a, at this stage, contains two red zones. Al-
though the clients have slightly different positions, and the noise in their RSS values
generates somewhat different bowl radii, the amplitudes of these two peaks are nearly iden-
tical, making it impossible to choose the one corresponding to the client cluster. Suppose,
however, that before the experimental window closes, the 11th client emits a PR, which,
by chance, is picked up simultaneously at all three APs. Adding in the three bowls from
these new receptions produces the distribution shown in Figure 3b. It is clear from the
figure that the three AP PRs, although a minority occurrence, are sufficient to remove the
ambiguity about which peak to choose for the client cluster. Also shown in Figure 3b is
the black star obtained by triangulating from the three simultaneously received PRs. Its
position confirms the decision made using the density method, as expected. As a caveat,
there are clearly a multitude of different configurations of the 11 clients that could have
produced the distributions shown in Figure 3. The assumption is that in the limit of larger
numbers of clients, as discussed in Section 5, and given the natural tendency of clients
to assemble in groups rather than being organized in circles, in symmetric patches, or
uniformly distributed over the entire surface of a site, the interpretation chosen is the most
plausible one.

4.4. Counting Tool

Although the group of 11 clients has been localized in the example, it has not yet been
attempted to count them. To do so, the Renormalization Tool may be applied to obtain
Figure 3c, where the sum of probabilities of all PR received has been reinjected into the
selected red zone. The integrated probability in the zone is then, by construction, 13. If
the mean emission probability for the time window, X = 1, mentioned above, is used, the
estimated number of clients is Cest = 13/X = 13. As the true number of clients is C = 11, it is
tempting to say that the estimate is already pretty good. In fact, there are two choices. As a
first possibility, if it is certain that the probability of three AP PRs is small compared to that
of single AP PRs, one may choose to simply tolerate the counting error they introduce in
exchange for the ambiguity-resolution property that the three AP PRs provide. A second
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possibility would be to measure the fraction of three AP PRs in the data and somehow use it
to make a correction to X for a more precise estimate. The Counting Tool and the possibility
of introducing such a correction to X will be returned to in greater detail in Sections 5 and 6.

4.5. Filtering Tool

Before advancing to the applications in the next section, it is important to discuss a
simple, yet troublesome additional configuration frequently encountered in real outdoor
WiFi datasets. In some networks, certain APs may be located inside buildings or in other
areas favoring very close proximity to the AP—a few meters, for instance. Because of
the enclosed geometry and/or accompanying increased distance from the other APs,
triangulation is usually not possible. In these cases, the bowl associated with the AP will
be very sharply peaked, because of its small radius. As long as the radius is not too large,
the consequences for localization are in fact minimal, since one may simply tabulate the
total number of PR received—almost exclusively single AP—and associate them with the
narrow bowl surrounding the AP location (see Figure 4). The difficulty with using the Bowl
Tool here, however, is that the extreme peak often obscures the finer structure of the client
density map further away from the AP. For this reason, it is convenient, when analyzing a
site with the Bowl Tool, to exclude indoor APs, as well as any PR having RSS > −60 dBm,
from the map before continuing the study. This procedure is called the Filtering Tool.
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Figure 4. An AP with “indoor-like” propagation characteristics. In (a), five clients are in close
proximity to the AP, creating a sharply peaked bowl. (b) A threshold can be applied to renormalize
the density to a more compact region. (c) 3D representation of the sharply peaked bowl. The
integrated PR count is recorded, and the PRs are removed from the plot to render the smaller-scale
structure (shown schematically as a blue circle in the 3D plot) more visible.

4.6. Localization Tool

In the discussion of triangulation, it was assumed that the values of the propagation
parameters A and n were known. Although, as mentioned earlier, A is normalized in
the industry to −30 dBm, it is more prudent to actually measure A for a particular site.
Furthermore, the value of n is highly dependent on the propagation environment of the site
under study. In practice, using incorrect values for A or n can lead to dramatically different
distance estimations. As site propagation studies are complicated and expensive to carry
out, it is often the case in real-world scenarios that reliable ground truth measurements are
not available.

One way to reduce the dependence on propagation parameters is to make use of a
simple observation arising from the Friis equation. Consider three APs, AP1, AP2, and
AP3, arranged in a triangle as shown in Figure 5, for an example from Site 2. The distances
between the APs are D12, D13, and D23. A client located at some position in the vicinity of
this triangle—in this case, within it—emits a PR that is received simultaneously at the three
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APs, with power values RSS1, RSS2, and RSS3. Inverting Equation (1) and taking d1, d2,
and d3 as the distances of the client from the three APs gives:

αij =
di

dj
= 10

RSSi−RSSj
10n i 6= j = 1, 2, 3. (4)
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Figure 5. Circles of Apollonius (green, blue, and orange) for AP1, AP2, and AP3, separated by
distances D12, D13, and D23. A client within the white circle sits at distances d1, d2, d3 from the three
APs. The radii of the circles are R12, R13, and R23. The solution for the client location determined
from the RSS values at the three APs is indicated by the red star at the intersection of the circles.

The dependence of the distance ratios on parameter A has been cancelled out. Equation
(2) tells us that the ratio of the distances from the client to any two APs is a constant. As
it turns out, this implies that for each pair ij, the client position lies on a circle, called the
Circle of Apollonius after the second-century Greek geometer who discovered the relation,
which has its center on a line drawn through the two APs and a radius given by:

Rij =
αij

αij
2 − 1

Dij i 6= j = 1, 2, 3. (5)

The circles appear in green, blue, and orange in Figure 5. We stress that these are not
the same as the triangulation circles introduced in Section 4.1.

If the Friis relation were an exact expression rather than a model, and in the absence
of noise on the RSS values and for AP triangles that are not excessively obtuse, any two
Apollonius circles will intersect at two candidate client locations, one of which can usually
be rejected as unlikely. In more realistic cases, an exact solution may not exist, but numerical
solvers can be used to find the best non-exact solution, for example, in a least-squares sense,
which is often rather good. The added redundancy of using all three circles instead of just
two can also be helpful in such cases. In practice, nonetheless, depending on the site under
study, the rate of localizations with poor or no Apollonius solutions can be several tens
of percent.
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The importance of the Apollonius localization solution, apart from being independent
of the parameter A, is that the position found also depends only weakly upon the fading
exponent n for the range 2 < n < 3. A simple calculation shows that for n in this range, the
radius of an Apollonius circle varies by only about 16% of the distance Dij between two
APs, which in turn is of the same order as the intrinsic resolution obtainable in outdoor
WiFi networks. This relative independence of Apollonius client positions on propagation
parameters allows us to envisage using them to calibrate A and n, which is a very interesting
proposition in the not uncommon real-world situations where propagation ground truth is
not available. Figure 6 shows a plot of RSS versus log-distance for the Site 1 dataset, using
as distances Apollonius solutions deemed to be of good quality. The resulting distribution
is well described by the Friis formula, with A = 36.2 dBm and n = 2.24. These values are
then used to calibrate the Friis formula for the site in question.
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Figure 6. Plot of RSS in dBm versus the log of the distance in meters. Measurement of propagation
parameters A and n for the Site 1 dataset using Apollonius solutions as client positions. Different
colored dots correspond to different APs at the site. A least squares fit to the Friis formula over all
APs gives A = 36.2 dBm and n = 2.42 for Site 1. Similar results are obtained for Site 2.

5. Application to Real Datasets

In this section, the tools introduced are applied to examples drawn from real WiFi
datasets. Additionally, presented are the Fiducial and Drill-Down tools that enable a more
detailed and quantitative interpretation of the data reduction process than presented thus
far. For each site, a density plot of PR counts over a three-hour period is selected, sufficient
to assure a large enough number of accumulated PRs while still allowing time-dependent
analysis of client activity. The examples chosen are typical, yet they also illustrate certain
particular configurations.
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5.1. Complete Data Reduction Scenario Applied to Site 1
5.1.1. Applying the Filtering Tool

The raw PR density over the three-hour afternoon period from 12:00 to 15:00 is shown
in Figure 7, both in 2D and 3D. From the 3D plot, it is clear that sharp peaks caused by
clients within a few meters of an AP obscure the finer-scale data. So pronounced is the
effect that the 2D plot appears almost empty. To alleviate this problem, the integrated PR
count from indoor APs, as well as all PRs with RSS > −60 dBm, is recorded, and then
these PRs are removed from the plot (Filtering step). The density after filtering appears
in Figure 7b), where the underlying structure of the density over the full site begins to
become apparent.
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5.1.2. The Fiducial Tool

The red regions in Figure 7b correspond to higher “bowl”-based probabilities of
the presence of clients. In principle, one could apply a threshold and renormalize the
probabilities, as in Section 4.3, but the problem is more complex now. There are 8 APs
and more than 43,000 PRs represented in the plot. In addition, there are still some “peaky”
structures apparent. What is the best threshold to apply here? In order to reply with more
confidence, the bowl density information is complemented with independent confirmation
from localizations based on PRs received simultaneously at three APs. Although these
represent only a fraction of the total PRs and the efficiency for successful Apollonius
localization, as discussed in Section 4.6, falls well short of 100%, if there are enough cases
of three AP PRs, their spatial localizations will be useful for confirming the information
provided by the density itself.

Figure 8a shows the density plot of Figure 7b with the successful Apollonius localiza-
tions superimposed upon it as black stars. There are about 700 of them, some of which
appear outside of the covered site. It is desired to characterize the region occupied by these
localizations so that it may be used as input to the Renormalization Tool. In order to select
a region that represents the bulk of the localization while eliminating outliers, use is made
of the Convex Layer Set of the localization point distribution. The first layer of this set is
the Convex Hull; the second is the convex hull of points remaining after removing the first
hull; and so on. Since there are many localizations here and a significant number of outliers
due to poor-quality Apollonius solutions, the fifth Convex Layer is chosen to bound the
points, as shown in Figure 8b. This use of Apollonius localizations and Convex Layers to
characterize the true spatial extent of the client density is called the Fiducial Tool.

5.1.3. Applying the Renormalization Tool

With the fiducial region now defined, all probabilities are renormalized into the region.
The result is shown in Figure 9, both in 2D and 3D. All densities outside the fiducial
region have disappeared, allowing us to focus on the region in which the clients are
actually located. Within the fiducial region, in the 2D plot, one may note two regions of
enhanced probability, seen as peaks in the 3D plot. At the same time, these “bowl”-based
enhancements are not confirmed by an enhanced density of Apollonius points beneath
them. Indeed, the cylindrical nature of the 3D peaks points to PR reception predominantly
by single APs.
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Figure 8. (a) The successful Apollonius localizations are added to the density plot as black stars.
Convex layers are next tested as candidate fiducial regions. (b) The fifth convex shell is most
appropriate for eliminating outliers while retaining the major concentration of points.
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5.1.4. The Drill-Down Tool

In order to minimize the effect of these peaks and better study the behavior of the
density plot at smaller scales, a threshold is progressively lowered—easily controlled, for
example, with the wheel of a mouse—that drills down to a level where the finer structure
of the density becomes apparent. The PRs thus “decapitated” from the peaks are stored for
later reincorporation (as discussed in the next section). The result, displayed in Figure 10,
shows a bowl density that is nearly uniform—and therefore now in conformity with the
uniform distribution of localization points. Note that the chosen threshold still retains
90% of the total PR. The analysis of the site 1 example is now complete. What remains,
reassembling the different pieces into a coherent map, appears in Section 6, after the
presentation of the example from Site 2.
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5.2. Complete Data Reduction Scenario Applied to Site 2

A second example, from Site 2, is presented here, illustrating a different situation.

5.2.1. Applying the Filtering Tool

In Figure 11a, it is to be noted that the three-hour period studied here, this time for
the evening period of 18:00 to 21:00, presents only 2479 PR, almost a factor of twenty
less than the example presented for Site 1. A second observation is that, as for Site 1,
the plot is dominated by narrow peaks, two in this case, due exclusively to PRs having
RSS > −60 dBm. In Figure 11b, these PRs are removed with the filtering tool, revealing the
finer structure.
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Figure 11. Application of the Filtering tool to the density plot of Site 2. In (a), two peaks due to
high-RSS PRs dominate the plot. Removing these, (b) reveals the finer structure of the density.

5.2.2. The Fiducial Tool

Once again, it is desired to restrict the study to a fiducial area likely to represent the
region where the bulk of clients are actually located. Figure 12a shows the Site 2 density plot
with the Apollonius points, of which there are some 200, superimposed. In this example,
with a much lower PR count, the third Convex Layer is sufficient for delineating the area of
interest and excluding outliers, as shown in Figure 12b.

5.2.3. Applying the Renormalization Tool

In Figure 13, the Renormalization Tool is applied to the Site 2 example. Three key
features in the resulting bowl plots should be noted, perhaps more easily visible as small
red zones in the 2D representation. The first is a cylindrical peak associated with a single
AP in the upper left central part of the fiducial region. The second and third are two small
red zones, near the center and lower center of the fiducial, that coincide with enhanced
densities of localization points—in contrast to the Site 1 results, where the Apollonius
density was relatively constant over the fiducial region.
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Figure 12. (a) Site 2 density plot with Apollonius points superimposed. (b) The third Convex Layer
applied to delineate the fiducial region.

5.2.4. The Drill-Down Tool

To further study the relationship between the bowl-based density and the density of
Apollonius localizations for this site, let us now apply the Drill-Down Tool. The result is
shown in Figure 14. The drill-down performed retains 99.7% of the total PRs; its effect has
been to just slightly reduce the tallest peak in the plot. With this threshold, however, in the
2D plot, the higher Apollonius densities are now contained in a red, enhanced bowl density
zone, while the lower Apollonius densities are in the yellow part of the fiducial region. This
observation alerts us to a possible source of error if one were to use a single proportionality
factor X to convert from PR to clients, since the red region contains a higher percentage of
clients whose PRs are seen by three APs. To take this effect into account, in Section 6, some
improvements to the Counting Tool are introduced before detailing the Reassembly Tool,
which outputs final site maps calibrated for clients rather than PR, is presented.
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Sensors 2023, 23, x FOR PEER REVIEW 19 of 31 
 

 

density zone, while the lower Apollonius densities are in the yellow part of the fiducial 
region. This observation alerts us to a possible source of error if one were to use a single 
proportionality factor X to convert from PR to clients, since the red region contains a 
higher percentage of clients whose PRs are seen by three APs. To take this effect into ac-
count, in Section 6, some improvements to the Counting Tool are introduced before de-
tailing the Reassembly Tool, which outputs final site maps calibrated for clients rather 
than PR, is presented. 

 
Figure 14. Drill-Down tool applied to renormalized Site 2 density. One observes a red zone coinci-
dent with high localization density, and a yellow zone coincident with lower localization density. 

6. Reassembly Tool 
As stated earlier, the purpose of the Reassembly Tool is to put together the different 

pieces of the PR density map into a map calibrated for clients rather than PR. The idea that 
client counts are obtained from PR counts by dividing by a proportionality factor X ap-
propriate to the time window in question has already been introduced. In order to follow 
client activity over time, however, the focus is placed on blocks of three hours throughout 
the day, which may need different values of X according to the type of activity—morning, 
afternoon, weekend, active, resting, etc.—prevalent in each block. Evidence is also visible, 
in the example of Site 2, of X values that vary according to the position, in particular re-
garding the percentage of PRs that are simultaneously detected at three APs and can thus 
be localized. In order to correctly reassemble the different pieces of the PR density map 
into a coherent client density map, one must therefore possess two key elements: a base-
line X value for the site under study and a technique for correcting X as a function of time 
and position on the density map. In the next section, some extensions to the Counting Tool 
designed to facilitate the reassembly process are proposed. 

6.1. Counting Tool Revisited 
6.1.1. Determining a Baseline Site X Value 

As mentioned earlier, the data used in this work are part of a larger set that includes 
the city data reported in [1]. The principle contribution of that work was a means of de-
riving baseline X values for a site from statistical properties of its PR data, in particular, 
weekly periodicities in workday versus weekend populations present in the city data. In 
[1], for three French cities over two distinct time periods in 2020 and 2021, measured daily 
X values ranged from 420 to 670 (where a typical error bar is 10–15%), with a mean over 
all sites of X = 524 ± 47 [1], again, for a period of 1 day. However, as the data in the present 
work were acquired at a historic tourist site (Site 1) and a campground (Site 2), their PR 
counts do not manifest the clear weekly periodicities that were the norm for the city data 
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6. Reassembly Tool

As stated earlier, the purpose of the Reassembly Tool is to put together the different
pieces of the PR density map into a map calibrated for clients rather than PR. The idea
that client counts are obtained from PR counts by dividing by a proportionality factor X
appropriate to the time window in question has already been introduced. In order to follow
client activity over time, however, the focus is placed on blocks of three hours throughout
the day, which may need different values of X according to the type of activity—morning,
afternoon, weekend, active, resting, etc.—prevalent in each block. Evidence is also visible,
in the example of Site 2, of X values that vary according to the position, in particular
regarding the percentage of PRs that are simultaneously detected at three APs and can thus
be localized. In order to correctly reassemble the different pieces of the PR density map
into a coherent client density map, one must therefore possess two key elements: a baseline
X value for the site under study and a technique for correcting X as a function of time and
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position on the density map. In the next section, some extensions to the Counting Tool
designed to facilitate the reassembly process are proposed.

6.1. Counting Tool Revisited
6.1.1. Determining a Baseline Site X Value

As mentioned earlier, the data used in this work are part of a larger set that includes the
city data reported in [1]. The principle contribution of that work was a means of deriving
baseline X values for a site from statistical properties of its PR data, in particular, weekly
periodicities in workday versus weekend populations present in the city data. In [1], for
three French cities over two distinct time periods in 2020 and 2021, measured daily X values
ranged from 420 to 670 (where a typical error bar is 10–15%), with a mean over all sites
of X = 524 ± 47 [1], again, for a period of 1 day. However, as the data in the present work
were acquired at a historic tourist site (Site 1) and a campground (Site 2), their PR counts do
not manifest the clear weekly periodicities that were the norm for the city data and, as such,
cannot be directly used to measure X for the two new sites using the statistical method
developed in [1].

It is, however, possible to demonstrate that the X values for the two current sites,
after certain adjustments, are consistent with those measured in the city data. Indeed,
in [1], the measured city X values were validated against several independent benchmarks,
including comparisons to similar measurements in the literature, as well as a calculation
based on the connected clients (CC) present in those data. The idea is that since the MAC
addresses of CC are fixed, one may directly count the number of PRs per CC. As a caveat,
one does not a priori expect the behavior of CC to be identical to that of CR. In particular,
CC often make use of the fixed WiFi connection to set up Extended Services or ES (see [1]),
such as Peer-to-Peer networks, which can produce extremely large PR counts. However,
by eliminating clients considered to be participating in ES [1], one expects the X values
obtained for CC and CR to be relatively similar, as was the case in [1].

For the city data in [1], the CC-estimated X values were obtained using the relation [1]
XCC = P/(ACC<tCC>), where XCC is the estimated X value for the CC, P is the number of
PR, ACC is the number of CC, and <tCC> is their average duration of stay on the site during
the chosen time window. For the data in [1], the resulting XCC values ranging from 378 to
948 are in reasonable agreement with the CR-estimated X range in [1] mentioned in the
preceding paragraph, namely 420 to 670. One may say that in [1], the CC were used to
validate the X values obtained from the CR in [1]. To now validate the CR data of Sites 1
and 2 in the present article, using the CC of the present article, one proceeds in the identical
way. The results are given in columns 1 and 2 of Table 1.

Table 1. X validation results using CC, for the present article, evaluated for a 1-day period to allow
direct comparison with [1]. Column 1: percentage of CC retained after the ES-cut (see text). Column 2:
baseline X value computed using P/(ACC<tCC>) as discussed in the text. The value for Site 1
compares well to results for cities in [1], but that for Site 2 is too high and has a large variance (see
discussion in text). Column 3: approximate range of the values, or P3/P in the CR data of the two
sites. Column 4: mean value, of P3/P in the CR data of the two sites. Column 5: correction to the
value in column 2 using the formula derived in the text from P3 and P. Column 6: predicted X12
values directly comparable to X values from the city data in [1]. After the correction, the mean values
in column 6 compare well with the city data in [1]. The large variance of the Site 2 value is discussed
in the text.

Site % of CC after
ES-Cut Xbase (for CC) Range P3

P
(for CR)

< P3
P >

(for CR)
Correction
1− 2

3

〈
P3
P

〉 Predicted X12
(for CC)

1-historic 99.8% 369 ± 36 0.0–0.15 0.07 0.953 352 ± 34

2-camping 92% 1139 ± 394 0.2–0.7 0.35 0.767 873 ± 302
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The first column of the table gives the percentage of CC retained after the ES-cut.
For Site 1, very few clients had abnormally large PR emission rates, while for Site 2, the
percentage was much higher. It is supposed that this is due to the different characters of the
two sites. At a historical tourist site such as Site 1, most guests will stay only a short time
and spend most of it shuttling from one point of interest to the next, and as such, they will
have little incentive to connect to the local WiFi to set up special situations. Site 2, however,
is a campground that includes bungalows. Guest will often stay several days in quarters
that may lack the wireless environment and tools to which they were accustomed at their
usual domiciles, so the motivation for piggybacking off the local WiFi—with its potential
for high PR count services—will be high. Furthermore, at both sites, OUI values of the
high-PR count CC, when exploitable, often pointed to IoT-type devices rather than user
telephones. Finally, we stress that the overall number of CC is a small fraction of that of CR,
making it less exploitable statistically for a detailed study, a point that will be important in
the discussions that follow.

The second column of Table 1 gives the mean baseline X values of the CC in the present
work, calculated using the formula presented above, XCC = P/(ACC<tCC>), along with
their Mean Absolute Deviation, MAD. It is seen that the mean value of 369 for Site 1 fits
well with the range of CR-based X values (420–670) as well as the XCC values (378–948)
obtained for the cities in [1]. As for Site 2, the situation is somewhat different. The X value
obtained from the CC here, 1139, is rather high compared to the others. In addition, its
MAD of 394 seems curiously large compared to the normally encountered range of 10–15%,
mentioned earlier. The next section will show that these differences are a result of the
behavior of P3, the number of PR received at three APs, in the present data as compared to
the city data in [1].

6.1.2. A Strawman: Site-Dependent, Time-Dependent Xbase

As mentioned in Section 3, the class CR in this article was defined by requiring no
more than three observations of a hashed MAC address in the selected time window. This
threshold ensures that most of the CR MAC addresses are indeed randomized—i.e., do
not retain the same MAC address over several PR emissions—but still retains the case
when a CR client’s PR is observed at three APs, enabling this client’s PR to be localized via
triangulation. In contrast, for the city data analyzed in [1], a threshold of 2 was selected.
Although this choice also ensures a clean separation between CR and CC, it removes the
possibility of triangulation. Indeed, it was found empirically that three AP hits were very
rare in the city data of [1]: only about 2% of PRs were detected twice in the course of a day,
and a tiny additional proportion at three APs. This is in stark contrast to what is observed
for Sites 1 and 2 of the present work, where three AP hits can make up a substantial fraction
of total APs. Indeed, were there not at least some fractions of CR seen simultaneously
at three APs, it would be considerably more difficult to speak of localization at the two
Sites. This underlying difference between the city data and that of Sites 1 and 2 can be
attributed to the geometrical layout of the APs in the two cases. In the city data of [1],
the deployed networks invariably consisted of a limited number of widely spaced APs
arranged in predominantly linear configurations ill-suited for triangulation.

In order to put the city data and Sites 1 and 2 data on an equal footing for comparison,
as well as provide a means to take into account the increased P3 values at Sites 1 and 2, we
propose the following “strawman” procedure. As a first-order approximation, one may
assume that the X reported in [1], which we shall now call X12, is valid for sites where
multiple AP PRs are rare and, from there, attempt to make a correction for sites having
more dense AP layouts and hence, more three-AP PRs. We pose the following:

P ∼ P12 + P3 ∼ C12X12 + 3C3X12 = (C + 2C3)X12∗ (6)
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Xbase =
P
C

= (1 +
2C3

C
)X12 = (1 +

2 P3
3X12

C
)X12 = (1 +

2 P3
3X12
P

Xbase

)X12 (7)

Xbase = X12 +
2
3

P3

P
Xbase (8)

Xbase =
X12

1− 2
3

P3
P

(9)

where P is the total number of PRs, C is the total number of clients, P3 is the number
of PRs seen simultaneously by three APs, C12 is the number of clients producing one
or two PRs per emission, and C3 is the number of clients whose PRs were seen at three
APs. Note that in the last line of Equation (9), Xbase, the corrected site baseline X value,
is expressed completely in terms of measurable quantities P and P3, and X12 from [1],
assumed to be valid also for the sites studied here. For P3 = 0, we retrieve Xbase = X12, as
required, while for P3 = P, the strawman predicts Xbase = 3X12, which is reasonable given
the initial assumptions.

One may get an idea of the applicability of the strawman by referring again to Table 1.
In column 3 are presented the range of values of the ratio P3/P for Sites 1 and 2. It is evident
that the absolute numbers of CC at Sites 1 and 2 are too low to provide a statistically stable
measurement of P3/P. To remedy this, in columns 3, 4, and 5 of the table, the ranges and
mean values of P3/P measured for the CR are cited, which should be similar to those of the
CC since P3/P is a quantity that depends predominantly on network layout. Columns 3
and 4 of the table show that the fraction P3/P is indeed significant and that it is much
larger at Site 2 both in magnitude and in range. This observation is consistent with the
much increased MAD value at site 2, i.e., the fraction P3/P varies significantly throughout
the course of a day, leading to large variations about the mean value. In column 5 of the
table, this average P3/P value is used to calculate the reciprocal of the strawman fraction,
thus creating an ad hoc correction factor that allows to put the Site 1 and 2 daily X values
on a common footing with those of the city data in [1], for comparison. In column 6, the
resulting values are indeed now seen to be coherent with the ranges mentioned earlier, i.e.,
420–670 for the measured city values and 378–948 for the CC-based validation values.

As a caveat, it must be remembered that the strawman prescribes using the instanta-
neous value of P3/P, not its mean, to correct X12. Column 6 of the table is intended to show
the general trend of the correction. When actually used in the counting and reconstruction
tools, the instantaneous values of CR-derived P3/P values are to be used. It is also for this
reason that in the following, we prefer to use X12 = 524 from [1] as the canonical conversion
factor, rather than the CC-derived, ad hoc corrected values reported in column 6 of Table 1.

It is clear that P and P3 are site-dependent quantities, so Xbase automatically adapts to
each site. Also, in the proposed treatment, the time window used is not explicitly specified.
Indeed, the resulting formula for Xbase is valid for P and P3 from any time window. In
particular, it is applied directly to the 3-hour windows chosen for this article, so that Xbase
also adapts to each individual time window. As a caveat, the constant value X12 in the
above equations must be adjusted to correspond to the three-hour time window chosen for
the client density plots in the present work, i.e., X12 = 524 × (8/24) = 65.

In creating the strawman, some simplifying approximations have been made. Clearly,
a more rigorous treatment is possible—for example, by explicitly including a term for P2
or P4, etc.—but given the statistical uncertainty in X12 to begin with and the systematic
uncertainties in applying it to new data sets, this may not be the major priority at this
stage. The strawman provides an informed, first order estimation of the results that may be
expected in estimating numerical client densities from raw probe requests in outdoor WiFi
networks for which ground truth is not available. We shall employ it in the Reassembly
Tool, where appropriate, for estimating overall client counts versus position.
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6.1.3. Xbase Adapted for Position

In Section 5.1.4, we identified red and yellow zones in the bowl density that coincide
with different densities of Apollonius localizations, that is, an enhancement in the number of
localizations in the red zone and a relative deficit in the yellow zone. In the same discussion,
it was suggested that the bowl density in the red zone—which counts PRs—may have been
artificially enhanced due to the abundance of PRs seen at three PRs. Because of the way the
bowl density is constructed, it is not possible to know the numbers of single-AP and three
AP PRs in the red and yellow zones. However, as a substitute, it is straightforward to count
the number of localization points in the two zones. It is proposed to use this information
to correct Xbase, color zone by color zone, when reassembling the different pieces of each
site, as outlined in Section 6.2 below for the two sites studied. The position-dependent
correction to Xbase may be applied according to:

Xcolor =
X12

1− 2
3

P3
′

P

; P3
′ =

NApollo(color zone)
NApollo

P3 (10)

where NApollo(color zone) is the number of Apollonius localizations in each color zone of
the bowl density plot, and NApollo is the total number of such localizations.

A difficulty with this correction as it stands is that while it adapts X to the different
color regions, it will alter the overall predicted number of clients. This problem can be
circumvented by normalizing the Xcolor values with

〈 1
Xcolor

〉 = 1
P ∑

i
(Pi·

1
Xi

) (11)

Xcolor ← Xcolor·Xbase·〈
1

Xcolor
〉 (12)

An example, with the values obtained for Site 1 in Figure 14 is given in Table 2.

Table 2. Breakdown of Xbase by color zone and corresponding number of clients for Site 2 for the
drill-down threshold in Figure 14. Columns are %pr: percentage of total PR; Nb_pr: number of PR;
Nb_apollo: number of Apollonius localizations (black stars); the next three columns are Nb_client:
estimated number of clients using three estimates of X; and in the last column, the color-by-color
Xcolor values from the plot.

%pr Nb_pr Nb_apollo Nb_client
(X12 = 65)

Nb_client
(Xbase = 93)

Nb_client
(Xcolor)

Xcolor

total 99.67 2343.27 163 36.05 25.2 25.2 77.49

red 59.21 1391.99 135 21.42 14.97 13.43 86.36

yellow 38.45 903.97 20 13.91 9.72 11.16 67.47

green 2.01 47.3 8 0.73 0.51 0.6 65.97

blue 0 0 0 0 0 0 65

transparent 0 0 0 0 0 0 65

The seventh and last column of the table gives the values of Xcolor obtained from
Figure 14, while columns 4, 5, and 6, respectively, give the estimated number of clients
using the fixed legacy X value from [1] normalized to a 3-hour period (65); a fixed overall
site P3 corrected X value (93); and a color zone by color zone correction (values appearing
in the last column). The estimated numbers of clients vary depending on the X method
used, as expected. As an example, the prediction for the yellow region is 13.9 clients for
uncorrected legacy X (column 4), 9.7 clients for an overall site-corrected X value (column 5),
and 11.2 clients when Xcolor is used to correct for position (column 6). What has been done,
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using Xbase and Xcolor, is to correct for the artificial enhancement in bowl density, using
legacy X, caused by the presence of proportionally more three-AP PRs.

6.2. Reassembly Tool
6.2.1. Reassembly of Site 1

The Site 1 PR density removed by filtering and drilling down, as well as the PR density
retained after drilling down, are shown graphically in Figure 15, recapitulating some of
the steps already seen in Figure 10. As the post-drill-down PR density shows no particular
structure, it is not necessary to apply position-dependent X. The client density is then
obtained by dividing all the pieces by the global site X factor of the time window and
summing the results.

The resulting client density map appears in Figure 16a. To make the plot more readable,
the density is smoothed with a Gaussian kernel of standard deviation 10 m, of the same
order as the intrinsic position resolution, in order to remove sub-resolution scale features
such as narrow peaks and boundaries between regions (see Figure 16b).

In the 2D plot, two red high-occupancy zones are visible. The estimate for the lower
one, which is consistent with the site entry ticketing area, is 68 clients on a surface area
of 1990 m2. The upper one, corresponding to one of the major tourist attractions of the
site, is estimated to contain 48 clients in an area of 1482 m2, while the surrounding yellow
zone contains 245 clients in an area of 8954 m2. The total integrated number of clients in all
regions of the plot is estimated at 704.

6.2.2. Reassembly of Site 2

The same procedure is followed for Site 2, as in Figure 17a,b, except that the after-drill-
down density, Figure 17c has been corrected by a position-dependent X, as explained in
Section 6.1. The after-drill-down density in Figure 17c is more uniform now compared to
that in Figure 14, due to this density-dependent X correction. The total summed density
is shown in Figure 18, before and after smoothing with a Gaussian kernel of standard
deviation 10 m in order to remove sub-resolution scale features such as narrow peaks and
boundary lines.

Our technique estimates that in the red zone of Figure 18a, there are 16 clients in a
surface area of 3741 m2, while in the surrounding zone, there are 7 clients over 2124 m2.
The client estimate for the entire plot is 33. A flowchart resuming the different steps used
in applying the toolkit is given in Figure 19.

As we have seen, the “Bowl,” Filtering, and Drilldown tools are graphical techniques
used to make the spatial representation of client density clearer. The Reconstruction tool,
in turn, in concert with the others, is a bookkeeping tool that allows one to retrieve the
different pieces into which the problem has been divided and reconstruct them into a
coherent and easily interpretable whole. It is the Fiducial tool, making best use of the
limited localization information available in low-resource networks; the Localization tool,
calibrated in a bootstrap procedure; the multi-step Counting tool allowing time and space
domain adaptation of the X proportionality factor; and the Renormalization tools for
redepositing the PR probabilities within the deduced fiducial region, that embody most of
the originality and warrant the success of the approach presented.
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7. Discussion and Conclusions

With the arrival of client privacy concerns as well as the rapid growth of IoT, the
widespread practice of using client MAC addresses contained in PRs for monitoring and
mapping client activity has become untenable, creating a need today for new tools. Here, a
set of nine tools is presented to transform raw randomized MAC PR counts from real-world
outdoor WiFi networks directly into density maps calibrated for clients, all without the use
of any ground truth. The technique has been applied to data from two actual network sites
in France, with interesting results.

At present, the density predictions of the technique make use of a baseline PR emis-
sion probability, X, adopted from a similar study, augmented with a few reasonable, yet
approximate, corrections. A high-priority perspective is thus to discover more precise
estimation methods and use them to evaluate our technique on current data. An important
route towards this goal is to encourage interactions with outdoor WiFi service providers
and site managers so as to evaluate and calibrate the tools proposed here.

Indeed, personnel having day-to-day familiarity with the details of monitored sites are
likely to possess precious expert information not easily available to the data scientist, armed
with an Excel file and a Google Maps satellite view of the site, charged with extracting the
necessary metrics. Several examples are given as follows:

• Local network managers will probably retain records of the site IoT devices, such
as cameras, lighting, loudspeakers, etc., in regular use, as well as of user equipment
assigned to site personnel and potentially participating in P2P or similar services. Such
information will be invaluable for separating the corresponding PR counts of these
devices from those derived from bona fide clients.

• Site managers will also likely possess information on seating capacities of auditori-
ums, attractions, etc.; guest capacities of lodging and restaurant facilities; and visitor
capacities of attractions, events, and the site itself. Such limits can be used to constrain
estimates of the local site X factor.

• In cases where complementary footfall counting equipment is present at certain loca-
tions on a site, for example, head counts, presence sensors, etc., their outputs can also
be used to condition estimates of the PR to client conversion factor X.

• Personnel familiar with site layout and maintenance will also have knowledge of
land occupation distribution. Areas that are inaccessible, cordoned off, or fenced
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off, restricted in access, or simply situated outside the detailed official boundaries
of the site, can be excluded from the fiducial area when the Renormalization tool is
applied. Too, special-use areas, such as gardens, paths, parking lots, playing fields,
and golf courses, will probably display client behaviors particular to the special usages
of these areas and can be treated separately from more general user access areas when
predicting client densities.

• When available, gate receipts, ticket counts, etc. may also, in certain circumstances,
serve as indirect ground truth to which WiFi-derived client counts can be compared.

• Finally, site managers and organizers will also have access to scheduling information
concerning day-to-day, holiday, and seasonal opening hours for the entire site as well
as for individual facilities, including swimming pools, restaurants, golf, etc., and
for special events as well as temporary, occasional, or unscheduled closures. Such
timetables will be extremely valuable in establishing coherence between WiFi-derived
counts and ground-truth expectations.

The mapping of client activity based on randomized MACs is still a new endeavor.
The simplicity and independence from ground truth of the proposed toolkit make it an
interesting new contribution to the ongoing activity in the field, both for researchers and
for the personnel involved in managing the sites under study.
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