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Abstract
In recent years, the segmentation of short molecular trajectories with varying diffusive properties
has drawn particular attention of researchers, since it allows studying the dynamics of a particle. In
the past decade, machine learning methods have shown highly promising results, also in
changepoint detection and segmentation tasks. Here, we introduce a novel iterative method to
identify the changepoints in a molecular trajectory, i.e. frames, where the diffusive behavior of a
particle changes. A trajectory in our case follows a fractional Brownian motion and we estimate the
diffusive properties of the trajectories. The proposed Bottom-up iterative anomalous diffusion
detector (BI-ADD) combines unsupervised and supervised learning methods to detect the
changepoints. Our approach can be used for the analysis of molecular trajectories at the individual
level and also be extended to multiple particle tracking, which is an important challenge in
fundamental biology. We validated BI-ADD in various scenarios within the framework of the 2nd
anomalous diffusion challenge 2024 dedicated to single particle tracking. Our method is
implemented in Python and is publicly available for research purposes.

1. Introduction

Finding a pattern in a continuous random process to predict the future from limited observations has been
extensively studied to predict stock index, consumer’s patterns in economics, trajectories of molecules in
physics and fractals in mathematics [1–3]. In 1951, the British hydrologist Harold Edwin Hurst introduced
the Hurst exponent H to determine the dam size of the Nile river depending on the periodical rain observed
in Egypt [4]. Since then, various methods have been developed to estimate H, the long-range dependence in
a random process, from classical methods such as rescaled range (R/S) analysis [4] to machine learning based
methods [5–8], with the goal to estimate H as accurate as possible.

In biology, with the recent development of single molecule microscopy [9, 10], it became possible to
rapidly image the dynamics of thousands of proteins in living cells. By quantifying the dynamics of protein
populations, we can observe protein interactions or explore the activity of novel pharmaceuticals with
previously unmatched resolution. The molecular diffusion can be described by the anomalous diffusion
coefficient α (where α= 2H) and the generalized diffusion coefficient K; α and K represent the dependence
of molecular diffusion over time and the magnitude of diffusivity respectively. More precisely, the anomalous
exponent α represents the degree of recurrence of DNA exploration, that is, the number of times a DNA
locus re-iteratively scans neighboring regions before reaching a distant position. When α is low, the locus
explores recurrently the same environment for a long time reaching the same targets, while a high α indicates
that the locus is able to explore new environments often. However, the prediction of α still remains
challenging mainly due to the short length of molecular trajectories coming from experimental limitations.
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The low number of observations is a major hurdle which limits the improvement of α estimation and
further analysis. The physical limitations of empirical methods in optics and noise in low-resolution images
of molecules also increase uncertainty in statistical results. Thus, the accurate estimation of α from short
sequences is absolutely needed for the prediction of molecular dynamics and its change in a heterogeneous
environment.

In our contribution, we introduce a method to estimate the α and K with neural networks (NNs) from
an individual short molecular trajectory following fractional Brownian motion (fBm) [11, 12] which is a
generalization of Brownian motion having an auto-covariance function given as:

E [BH (t)BH (s)] =
1

2
(|t|α + |s|α − |t− s|α) , (1)

where t ∈ R and α ∈ (0,2). The accurate estimation of α and K is crucial to determine the changepoint in a
trajectory, which is the moment where molecular dynamics changes are induced by changes of K and/or α.
These changes can reflect the activity of a molecule, such as the binding to a substrate, a sudden change of
molecular crowding when entering or exiting a macro-domain.

The classical method to analyze molecular properties at ensemble-level in homogeneous systems is mean
squared displacement (MSD) [13]:

MSD(t) = 2nKtα, (2)

where n is the dimension. In biology, the MSD represents the amount of space a locus has explored in the
nucleus, cytoplasm and membrane which can reveal the nature of molecular motion at ensemble-level.
When molecules freely diffuse (α = 1), its MSD curve is linear in time and its motion is called Brownian.
However, in living cells, the molecular motion is often slower than Brownian diffusion and is called
subdiffusive (0< α < 1) [14] and the future trajectory is negatively correlated to the past trajectory. Several
types of subdiffusive motion have been observed in biological tasks [15]. When a chromosomal locus is
confined inside a sub-volume of the nucleus, the motion is called confined subdiffusion and the MSD
exhibits a plateau [16]. When a force or structure that restricts the motion is not a simple confinement but is
modulated in time and space with scaling properties, the motion is called subdiffusion [14, 17]. The
superdiffusion (1< α < 2) usually indicates that the molecules are able to explore new environments and
the future trajectory is positively correlated to the past trajectory. However, MSD is not a proper method in a
heterogeneous environment of real data, since it averages over the ensemble of trajectories without
considering the change of dynamics for each individual trajectory, and does not fit well in general due to its
requirement of long observations. Moreover, MSD is meaningfully valid for ergodic processes such as
Brownian motion or continuous-time random walk with limited waiting time.

To analyze the molecular trajectory at individual level and to approximate the changepoints, we propose
a novel method to classify molecular trajectories by dividing each trajectory into multiple sub-trajectories.
We introduce bottom-up iterative anomalous diffusion detector (BI-ADD) which identifies changepoints of
molecular trajectories at individual level when molecules diffuse under fBm. BI-ADD integrates both
classical and deep learning approaches for the analysis of molecular trajectories. The predicted changepoints
with BI-ADD can indicate the significant changes of α and/or K along the trajectory.

The AnDi challenge [18–20] aims to analyze biological phenomena with inspections of molecular
trajectories in cells. The molecular trajectories can be studied collectively in a homogeneous system or
individually in a heterogeneous system if the diffusive properties change over time and space. The 2nd
anomalous diffusion challenge (AnDi2 Challenge), which is a successive challenge of 1st challenge [20], has
been held in 2024 to answer the biological questions in terms of molecular trajectory and we participated in
the challenge as SU-FIONA team. The performance of BI-ADD compared to other methods participated in
the challenge is available in [19, 21]; we were ranked 1st of 3 teams for the video task and 6th of 18 teams for
the trajectory task (http://andi-challenge.org/challenge-2024/#andi2leaderboard). Since the BI-ADD detects
the changepoints and the diffusive properties from the molecular trajectory only, we applied FreeTrace [22]
to infer the trajectory of molecules from microscopy videos of AnDi2 challenge. The simulated fBm
trajectories to train the deep learning models and also to evaluate the obtained results were provided by the
AnDi2 challenge [18]. The notations utilized in our algorithm are listed in table 1.
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Table 1. Notations.

Symbol Description Units

X x coordinate sequence of trajectory Pixel
Y y coordinate sequence of trajectory Pixel
α Anomalous diffusion exponent

K Generalized diffusion coefficient pixel2

framesα

T Length of trajectory Frames
Tsub Length of sub-trajectory Frames
cp Changepoint Frame
R Radial displacement sequence Pixel
λ Changepoint threshold for S
N Number of changepoints in a trajectory
k Number of different states (clusters) in a sample
Xt
wi

tth element inside a sliding window of size w at ith position of X
σXw

i
Standard deviation of sliding window of size w at ith position of X

Vw Converted signal, generated with sliding window of size w
S Signal averaging Vw With wset

wset Set of sliding window sizes
l Extension length for each first and last frames
Nsub Number of sub-trajectories divided for the regression of α
T Set of input trajectory lengths for the modelα

2. Methods

2.1. Workflow overview
The main objective of BI-ADD is two-fold:

1. Changepoints detection along the trajectory.
2. Estimation of the molecular diffusive properties α and K of sub-trajectories divided by the changepoints

in a heterogeneous molecular system.

In the preprocessing step, we first generate N candidate changepoints by converting the 2-dimensional
coordinates of a trajectory into a signal. Second, N + 1 sub-trajectories are generated by dividing the
trajectory with the potential changepoints from the converted signal, and the α̂ and K̂ of each sub-trajectory
are estimated. The diffusive properties are estimated with convolutional Long short-term memory
(ConvLSTM) [23–25] and a NN [26] for α̂ and K̂, respectively. Note that α̂ and K̂ can be done
simultaneously. We repeat the estimation for all trajectories from a given sample. Third, BI-ADD clusters α̂
and K̂ estimated from the entire sample to determine the total number of different states of the trajectories
with the Gaussian mixture model (GMM) [27]. In the main processing step, BI-ADD re-visits each
individual sub-trajectory iteratively to determine whether two consecutive sub-trajectories should be
merged. This decision is made based on the clustering results and the proximity of two sub-trajectories given
a fixed threshold. If BI-ADD merges two consecutive sub-trajectories, it re-estimates the α̂ and K̂ of the
merged new sub-trajectory and repeats the procedure until there are no more unexplored sub-trajectories.
The visualized workflow is shown in figure 1(A).

2.2. Detection of potential changepoints
Data. A set of 2-dimensional fBm trajectories (figure 1(B)). The trajectory of length T is a sequence of
coordinates {(x1,y1), . . . ,(xT,yT)}.

Definition 1. Changepoint is the time point where theK and/orα change for a given trajectory following fBm
and has the following properties.

(a) cpn (nth changepoint of a trajectory) divides a trajectory into two consecutive sub-trajectories from
cpn−1 to cpn and from cpn to cpn+1.

(b) Two consecutive sub-trajectories divided by a changepoint always have different α and/or K.
(c) N changepoints divde a trajectory into N + 1 sub-trajectories.
(d) The number of possible changepoints lies between 0 and T− 2 inclusive for a trajectory of length T.

3
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Figure 1. (A) shows the workflow of BI-ADD. In the pre-processing step (blue box), BI-ADD generates clusters from a given
sample of trajectories in α̂ and logK̂ space. In the main processing step (red box), the selection process contains an ordering of the
potential changepoints in the order of lowest value from the normalized signal S converted with the equations (3)–(7), and selects
the two first non-selected consecutive sub-trajectories. If two selected consecutive sub-trajectories belong to the same cluster with
a given significance level, BI-ADD merges the sub-trajectories and repeats the process. (B) Shows an example of two-dimensional
fBm trajectory, where α changes from 0.2 to 1.0 while K remains constant. The red and blue triangles indicate the start and end
points of the trajectory, respectively. The green star indicates the ground truth changepoint. The length of the simulated fBm
trajectory is 200, and the α changes at the 49th frame.

We can see that the finding of true positive changepoints relies on the performance of K̂ and α̂ for a given
sequence length. If we can have a model estimating the K̂ and α̂ with errors less than the minimum difference
of the true K and α for a given set of trajectories, this model also can detect the true positive changepoints
accurately since the difference of the K or α is relatively higher than the estimation error. However, a
trajectory of length T has T− 2 changepoints at maximum, which can be divided into T− 1 sub-trajectories.
The sub-trajectories have only one observation of coordinates, except for the last sub-trajectory in the
extreme case. The short length of the sub-trajectory is a major hurdle to precisely estimating the diffusion
properties of fBm and changepoints due to the stochastic nature of the process. To simplify the problem of
detecting changepoints, BI-ADD is built under the following assumptions.

Assumption 1. Given a set of trajectories following fBm, there is a fixed number of populations (i.e. states)
with different K and/or α.

Assumption 2. Each population has a sufficient number of trajectories for the clustering in the K and α space.

Assumption 3. The frequency of changepoints as a function of trajectory length is unknown.

Note that the clustering is performed with GMM and we do not cope with ‘a sufficient number of
trajectories’ of the assumption 2 in this article, which depends on the quality of trajectories, noises and the
difference of K and α between populations. To identify the clusters, we find potential candidates of
changepoints which divide a trajectory into multiple sub-trajectories, including false positives. The K̂ and α̂
of sub-trajectories decide the total number of different populations k= |{(K̂n, α̂n)|n ∈ {1,2, . . .,k}}|. We do
not assume the distribution of changepoints for the flexibility in assumption 3. However, given a prior
changepoint distribution of a sample as a function of elapsed time in each state, the model utilizing the prior
information can decrease the number of false changepoints. The strategy in the next section decreases the
computational time by avoiding the search for the true changepoint at every frame.

First, we extend a trajectory with a length of 2l by reflecting the extremities, where the first and last
coordinates are used as pivot points in the 2-dimensional Euclidean space. This extension of the trajectory is
needed to approximate the changepoints, to estimate α̂ and K̂ of sub-trajectories that are near the extremities
of the original trajectory. Next, we convert the extended 2-dimensional trajectory into a signal using multiple
sliding windows with the set of window sizes wset = {20,22, . . .,40}, i.e. the different numbers of frames
considered, as follows:

Xw
i,l =

{
Xk
wi
−X0

wi
| k ∈ [0,w/2]

}
(3)
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Aw
i,l =

∑∣∣Xw
i,l

∣∣ (4)

where Xk
wi
corresponds to the kth element of extended X, sliced with a sliding window of size w at ith position

of extended sequence. The subscripts l and r of equations (3)–(5) stand for the range of k ∈ [0,w/2) and
k ∈ [w/2,w) which correspond to the first and second half inside the sliding window respectively. The idea
behind equation (3) is to identify the maximal distance a molecule can move in a given time. Aw

i,l corresponds
to the last value in a sequence of CAS (Cumulative absolute sum) inside the first half of the sliding window of
size w in X space. Bw

i,l is computed similarly to A for Yw
i,l space. Figure S3 shows the corresponding CAS

obtained from the simulated fBm trajectories with the same K but different α values when the length of the
sequence is 256. It shows how the CAS of fBm can evolve as a function of sequence length. Equation (5) is the
comparison process for a time point i where the sequence is sliced with a sliding window of size w, in terms
of the last value of CAS of fBm. The difference of the empirical standard deviation of fGn is added as a
second term in equation (5).

vwi =

∣∣∣∣ Aw
i,l −Aw

i,r

max
(
Aw
i,l,A

w
i,r

) +
Bw
i,l −Bw

i,r

max
(
Bw
i,l,B

w
i,r

) ∣∣∣∣+ δ (5)

where δ = | σXw
i,l
−σXw

i,r
|+ | σYwi,l −σYwi,r |, σ corresponds to the standard deviation.

The main intuition behind this transformation is that the newly constructed signal reflects the relative α
and K differences of two sub-sequences of size w/2 inside the sliding window. Note that equation (5) can be
extended to a higher-dimensional trajectory since the transformed signal is a linear combination of simple
terms.

The Vw is a signal representing the relative difference of sub-sequences inside sliding windows measured
for every i except extended range:

Vw = {vwi |i ∈ [ l, l+T]} . (6)

We sum Vw over all possible window sizes to get S—our signal of interest—the signal integrating
information of all considered sliding windows w on multiple scales:

S=
∑
w∈wset

Vw, (7)

where i, j, l ∈ N, w ∈ 2N. Note that the additional points added on the extremities do not influence the result
since they are excluded from equation (6).

The choice of the sliding window size depends on the transition probability between sub-trajectories
assuming the Markov model in a heterogeneous system: a small size of a sliding window fits well with the
high transition probability, large sizes of sliding windows reflect the case of low probability of the transition.
An example of a normalized signal S is illustrated on figure 2. We can observe that a threshold λ divides a
trajectory into multiple sub-trajectories by finding the local maxima lying on the normalized signal S. The
local maxima above λ can be considered as potential changepoints where the relative difference is highest
between two sub-sequences. We can approximate potential changepoints including false positives from the
normalized S and can estimate α̂ and K̂ for each individual sub-trajectory.

2.3. Estimation of α̂ and K̂ for each sub-trajectory
The estimations of α̂ and K̂ are performed with a ConvLSTM network (Modelα, figure 3) and a fully
connected NN (ModelK , figure 4) respectively. For the training, we generate 1 million observations without
noise, 2-dimensional fBm sequences with uniformly selected lengths from 5 to 256. The model architectures
are shown on figures 3 and 4. The models are extendable to higher-dimensional sequences for the estimation
of both α̂ and K̂. To optimize the models, we use RMSprop for modelα and Adam [28] for modelK .

Since the convolutional layer accepts a fixed length of input only, the trajectory sequence of length T is
divided into Nsub sub-sequences where Nsub = T mod 2m + 1,m is the maximum number which makes 2m

smaller or equal to T. We trained the models with T= {5,8,12,16,32,64,128}. During the inference, the
regressed values of α are averaged if T−Nsub + 1 ̸∈ T. The input features for the α regression are as follows:

α1 =

{
1

σXT

j∑
t=0

|xt+1 − xt| | j ∈ [0, T− 1]

}
(8)
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Figure 2. A normalized signal S computed with multiple sizes of sliding windows on two simulated trajectories. The black vertical
lines show the ground-truth changepoints for each simulated trajectory. The orange dashed vertical lines show the potential
changepoints above λ. The green horizontal line corresponds to the threshold value λ= 0.4. The red signal is normalized S. The
transparent blue curves correspond to the Vw with various sizes of sliding window, where w ∈ wset. The fBm trajectory of (A) is
simulated with two states (K1,α1) = (0.01,0.2) and (K2,α2) = (0.1,1.0). (B) is simulated with (K1,α1) = (0.05,0.5) and
(K2,α2) = (0.1,1.5). The transition probability between the states for both (A) and (B) is 0.01. The peaks of the signal S indicate
the detected potential changepoints along the trajectory, where molecular dynamics changes.

Figure 3.Modelα architecture: estimation of α̂. The convLSTMTrue
512 stands for returning a full sequence with 512 convolutional

filters, the last output otherwise; hkn represents the nth neuron in kth hidden layer. This model takes 3 input features
(equations (8)–(10)). The convLSTM layers perform the feature augmentation. The total number of parameters in the model is
17 M.

α2 =
{
Rj/XY/T | j ∈ [0, T]

}
(9)

α3 =
{(
X−X0

)
/XY/T

}
, (10)

where σX, T, Rk and xt represent the standard deviation of x coordinate sequence, length of input sequence,
radial displacement for a sequence length at k and the tth element in X respectively. Note that the first value
of α1 is padded with 0 for equal length between features. These input features are for the estimation of α̂ in
terms of X space in a pointwise manner, and we took the average of α̂. The same procedure is repeated for Y
space and the average of α̂ for each dimension is used.

The input feature for K regression is provided as:

K1 = logXY, (11)

where XY= 1
T

T−1∑
i=0

√
(xt+1 − xt)2 +(yt+1 − yt)2 k,T ∈ N.

For a stable estimation of α̂, we consider that α1 is the most distinguishable input feature compared to
others that represents the normalized absolute cumulative sum of fractional Gaussian noise. The numerical
results of modelα and modelK are shown in figure 5. Note that α1 in equation (8) is divided by the empirical
standard deviation, which allows estimating the α and K separately. To test the models, we simulated 1000
trajectories for each αtrue and K true. We can observe that the performance decreases if T gets smaller; in
general, this is due to the low number of observations and it leads possibly to a biased result, since fBm is a
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Figure 4.ModelK architecture: estimation of logK̂; hjn represents nth neuron in jth hidden layer. This model takes one input
feature (equation (11)). The dropout layer avoids overfitting of the model. The total number of parameters is 33 K.

continuous Gaussian process. In the interval αtrue = 0.05 to αtrue = 1.0, σα̂ increases, and drops again from
αtrue = 1.0 to αtrue = 1.95. For the longer trajectories, where T> 32, we can see that the estimated results are
the most promising in the neighborhood near αtrue = 1.0. The estimation of K̂ shows reasonable results in
general, however, if αtrue gets bigger, such as αtrue > 1.5, the MALE criterion (equation (13)) increases
rapidly due to the auto-covariance of fBm. In this case, accurate estimation of K̂ is nearly impossible unless
the first coordinates of a short trajectory are sampled near the true mean of the Gaussian distribution.

2.4. Clustering of α̂ and K̂ and sequential inference on a trajectory
To filter the regression noise and false positive changepoints, we cluster α̂ and logK̂ of sub-trajectories from a
given sample. The clustering is performed with the GMMs for the sub-trajectories where the length Tsub is
longer than 16 due to high uncertainty of low number of observations. If the sample size is smaller, the
length Tsub of sub-trajectories for the clustering should be smaller to obtain enough data for the clustering.
However, if the sample size is big enough, we can increase λ to exclude uncertain short sub-trajectories. The
optimal number of clusters k is inferred with the Bayesian Information Criterion (BIC) score [29] or can be
decided manually. BI-ADD produces the distribution of α̂ and logK̂ shown in figure 6 and the number of
clusters can be deduced from the results.

With the Gaussian mixtures built in the pre-processing step, i.e. GMM clustering with estimated α̂, K̂ of
sub-trajectories on α–K space, we can determine that the approximated potential changepoints from a given
trajectory are true positives or false positives. BI-ADD starts the inferences from the lowest value of
changepoint in the transformed signal S. If two consecutive sub-trajectories divided by the changepoint are
estimated to belong to the same cluster with a given significance level (table 2) for each length of
sub-trajectory, BI-ADD merges the selected two consecutive sub-trajectories and re-estimates α and K. The
selection of clusters is determined by comparing the likelihoods of clusters constructed with GMM. BI-ADD
repeats the inference and merges the sub-trajectories until BI-ADD does not detect any possible merging.
The significance levels in table 2 were fixed by a heuristic approach. These alternating iterative steps are
performed sequentially.

3. Results

To extensively test the proposed approach BI-ADD, we participated in the AnDi2 Challenge as team
SU-FIONA for both video task and trajectory task at individual trajectory-level. The simulated scenarios of
the AnDi2 Challenge aim to generate the molecular trajectories on micro or nanoscale by mimicking real
world problems in biology. The details of comparative results between AnDi2 Challenge participants is
available in [21]. For the video task, we applied FreeTrace [22] to predict the individual molecular
trajectories from the video and analyzed the predicted trajectories with BI-ADD. For the inferred trajectories,

7
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Figure 5. (A): Regression results of α̂ on different sequence lengths T with αtrue ∈ {0.05,0.15, . . .,1.95}; α̂ is binned with
window 0.1 (to fit into the confusion matrix); 1000 trajectories are simulated for each αtrue. (B): Mean absolute error (MAE) for
αtrue with different lengths T. The blurred region shows 95% confidence interval. (C): logK̂,mean absolute logarithmic error
(MALE) for logKtrue with αtrue ∈ {0.1,0.5,1.0,1.5,1.99}. The red box contains the zoomed MALE values of
αtrue ∈ {0.1,0.5,1.0,1.5}. The blurred region shows 95% confidence interval. The estimation of logK̂ becomes challenging, if
αtrue ∈ {α|α > 1.9} due to the auto-covariance of fBm.

BI-ADD was used to predict the changepoints and the diffusive properties of molecular trajectories. We were
ranked 1st for the video task, and 6th for the trajectory task.

3.1. Evaluationmetrics
We evaluate the performance of the method using the following metrics, also used by the AnDi2 challenge:

MAE between an estimation ŷi and true value yi:

MAE=
1

N

∑
i

|ŷi − yi| . (12)

Mean absolute log error:

MALE=
1

N

∑
i

|log ŷi − logyi| . (13)

8
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Figure 6. Distributions of α̂ and logK̂ of sub-trajectories regressed from a given sample. The scatter size corresponds to the
normalized length of sub-trajectory. The colorbar represents the percent. (B), (D) show clustered α̂ and logK̂ of the distribution
(A) and (C) with GMM. (A), (C) are the 2-dimensional histogram with marginal distributions of α̂ and logK̂. (A) and (B) are
obtained from the sample where αtrue changes between 0.3 and 1.0 while K true is 0.1. (C) and (D) are obtained from the sample
where K true changes between 0.8 and 1.0 while αtrue is 1. Both samples are simulated with 1000 trajectories where the transition
probability is 0.01. The clustering with GMM is performed for the sub-trajectories where the length is longer than 16.

Root mean squared error (RMSE):

RMSE=

√
1

N

∑
i

(ŷi − yi)
2
. (14)

Jaccard similarity coefficient (JSC), which measures the true positive ratio of changepoints along the
trajectory without considering true negatives:

JSC=
TP

TP + FP + FN
, (15)

where TP, FP and FN are the numbers of true positives, false positives and false negatives respectively.
Mean squared logarithmic error:

MSLE=
1

N

∑
i

(log(1+ ŷi)− log(1+ yi))
2
. (16)

3.2. A two-state scenario of molecular trajectories: evaluation ofα andK
3.2.1. Data generation
We generate 20 000 2-dimensional fBm trajectories with T = 200. The two states of sub-trajectories are
described by {(K1,α1), (K2,α2)}, where the order of the states is random, and the transition probability
between them is 0.02.
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Table 2. Significance level for each Tsub.

sub-trajectory length(Tsub) 5 8 12 16 32 64 128

significance level 10−5 10−3 2.5× 10−2 10−1 10−1 10−1 10−1

Figure 7. Performance of BI-ADD varying α and K in different scenarios. On the left: 10 sets of scenarios
{(0.1,α),(0.1,1.0) | α ∈ {0.1,0.3, . . .,1.9}}; on the right: {(K,1.0),(1.0,1.0) | log2K ∈ {−5,−4, . . .,5}}, where set=
{(K1,α1), (K2,α2)}. 1000 fBm trajectories in 2D are simulated for each scenario with the transition probability 0.01. (A) and (B)
Show the root mean squared error (RMSE, equation (14)) of true positive changepoints. (C) and (D) show the JSC
(equation (15)) of changepoints. (E) and (F) show the MAE of true positive changepoints. (G) and (H) Show the mean squared
log error, equation (MSLE (16)) of true positive changepoints. We can observe that if the difference of α or K becomes smaller
between two set of states, the errors increase in general. The MSLE is the highest, if α= 1.9 due to auto-covariance of fBm and the
result is coherent with (C) of the figure 5. The metrics are calculated with AnDi datasets [18].

To explore the effect of various α values, we created one scenario with different α values with fixed same
K between two states, {(0.1,α),(0.1,1.0) | α ∈ {0.1,0.3, . . .,1.9}}, and another scenario with different K
with fixed same α between two states, {(K,1.0),(1.0,1.0) | log2K ∈ {−5,−4, . . .,5}}. The performance is
assessed using the metrics mentioned above, the results are shown on figure 7.

To measure the detection rate of cp (frame of a changepoint) in a given sequence, we use the JSC. We
consider ĉp (an estimated frame of a changepoint) as true positive if |ĉp− cptrue|< 10, and false positive
otherwise. The obtained results are intuitive: when the difference between two states of molecular trajectories
becomes smaller, BI-ADD underperforms compared to the case, where the difference between two states is
significant. The identification of changepoints is more difficult in terms of α than K, and the maximum value
of JSC is around 0.4 in figure 7(C), where the difference of α between two states is at the maximum. We can
see, however, the maximum JSC is around 0.8 on figure 7(D) which shows the detection of changepoints is
easier in terms of K than α. The estimated results of K on figure 7(G) emphasize the difficulty of accurate K
estimation, especially, where α≃ 1.9 due to auto-covariance of fBm. In addition to the results of two-state
scenarios, we simulated a 3-state scenario where the set of states is {(0.1,0.2),(1.0,1.0),(2.5,1.8)}. In the
3-state scenario, one population diffuse slowly showing anti-persistent motion, another Brownian
population with intermediate diffusion coefficient and the last population with fast and persistent diffusive
motion. The result is presented in figure S2 showing the RMSE= 2.594± 0.325, JSC= 0.736± 0.012,
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Figure 8. Performance of BI-ADD varying T in two different scenarios. The simulated sets of (K,α) of (A) are
{(1.0,1.0),(0.01,0.2)} and {(1.0,1.0),(0.1,0.5)} for (B). Note that the simulated diffusivity-difference of (B) between two
populations is smaller than (A). 500 trajectories of total length 2T are simulated for each T with 1 changepoint in the middle of
trajectories and 500 trajectories are simulated for each T without changepoints to reflect the false negative sensitivity of BI-ADD.
We can observe overall performance increases, if T gets longer except RMSE, since the metrics are calculated only for true
positives. The corresponding generated clusters for each T is available in figure S1.

MAE= 0.131± 0.001 and MSLE= 0.051± 0.001. We can verify the good performance of BI-ADD for 3-state
unless the diffusive properties between states are too similar which increase the difficulty of clustering with
GMM.

3.3. A two-state scenario of molecular trajectories: the role of T
The evaluation of BI-ADD for different length of short trajectories is shown in the figure 8. Scenario (A) is
simulated with {(1.0,1.0),(0.01,0.2)} and {(1.0,1.0),(0.1,0.5)} for (B). BI-ADD performs well for both
scenarios in general except for short trajectories where T = 5. If the differences of clustered α̂ and K̂ between
two population are sufficiently large to make distinguishable clusters (figure S1), the score of JSC for short
trajectories such as T = 5 is acceptable to use. If the distance between the generated clusters is not explicitly
distinguishable, the variance of JSC is large for short trajectories and the identified changepoints might
contain many false negatives and false positives.

4. Conclusion and discussion

We introduced a novel method—BI-ADD – to approximate the changepoints and estimate the diffusive
properties α and K from molecular trajectory. The method is based on three central parameters of BI-ADD.
The threshold (λ) of the transformed signal is set to 0.15 by default, λ acts as a false negative controller, its
low value can decrease the number of false negatives, but can increase the computational time, if it creates
more sub-trajectories. The automated estimation of λ was not tackled in the current contribution, since it is
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a challenging topic which is out of score in this paper. However, this problem is among our future research
directions.

The size of the sliding windows (wi) are set to i ∈ {20,22, . . .,40} by default. An optimal size of a sliding
window is related to the transition probability between the states of trajectories: if the transition probability
is low, the sliding window should not be small, since small windows are sensitive to the noise and the number
of false positives will increase. The total number k of the hidden states of a given sample is set to−1 by
default, and an optimal k is estimated with the BIC. However, the BIC criterion might produce a large
number of clusters, if the distribution in figure 6 contains many noisy sub-trajectories. This leads to multiple
Gaussians and unnecessarily increases the number of estimated clusters k. Thus, manually choosing the
number of clusters in real applications might be reasonable.

The memory storage and computational resources of BI-ADD are mostly consumed by the estimation of
α̂ due to the size of modelα. The approximate computation time of BI-ADDmainly depends on the length of
trajectories. The elapsed time for the scenario (A) in figure 8 is available in figure S5, the overall processing
time of 1000 trajectories is 522.9 seconds on a single machine equipped with RTX 3090, 24GB of VRAM. We
trained the modelα and modelK on a A100 chip with 1M simulated noiseless fBm 2-dimensional
trajectories. BI-ADD infers the changepoint detection sequentially due to the merging mechanism. The
sequential nature of the approach hinders parallelization of the changepoints approximation. A distributed
detection of the changepoints for the molecular trajectories is an important research avenue.

Another research direction is to tackle challenging scenarios which arise in real data. The BI-ADD copes
extremely well with the analysis of molecular trajectory in cases, where the diffusive properties between the
states are significantly different. If the difference of diffusive properties of a trajectory is small in terms of
both K and α, BI-ADD performs sub-optimally, since this setting is particularly difficult for all methods.
More precisely, the distributions of α̂ and logK̂ (e.g. figure 6) can be easily clustered since the clusters are
well-separated in our numerical experiments. Note that the clustering is done using the GMMs. In our
contribution, we make use of the obtained clustering, however, we did not explore yet the transition
probabilities between clusters. If the estimated transition probabilities between the states are time dependent,
this change over time can be studied for the biological inter-molecular processes. Another open problem is
an accurate estimation of α̂ from a short trajectory, where the length is smaller than 8. In a setting where a lot
of sequences are short, it becomes hard to perform the estimation accurately due to the low number of
observations. Since the accurate estimation of α̂ and K̂ is nearly intractable for very short trajectories, the
application BI-ADD for short trajectories in real data should be decided after analysis of the obtained clusters
(such as the clusters in figure S1). This point is critical for the prediction of molecular trajectories in biology,
since inferring long trajectories from real data is limited in empirical methods of optical physics and the data
acquisition is, in general, expensive.

We are currently testing the proposed BI-ADD on the experimental data of the FIONA team, Sorbonne
university.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.
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Software availability

The Python source code of BI-ADD is publicly available for research purposes. [30](https://github.com/
JunwooParkSaribu/BI_ADD)
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