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ABSTRACT

Wavefront shaping enables control of classical light through scattering media. Extending these techniques to spatially entangled photons
promises new quantum applications, but their fundamental limits, especially when both photons scatter, remain unclear. Here, we theoreti-
cally and numerically investigate the enhancement of two-photon correlations in two specific output modes through thick scattering media.
We analyze three configurations: shaping one photon after the medium, shaping both photons before the medium, and shaping both photons
after the medium. We show that each configuration yields fundamentally different enhancements compared to classical expectations. For a
system with N modes, we show that shaping one photon yields the classical enhancement # ~ (77/4)N, while shaping both photons before the
medium reduces it to f ~ (7/4)>N. However, in some symmetric detection schemes, when both photons are measured at the same mode, per-
fect correlations are restored with # ~ N, resembling digital optical phase conjugation. Conversely, shaping both photons after the medium
leads to a complex, NP-hard-like optimization problem, yet achieves superior enhancements, up to 7 ~ 4.6N. These results reveal unique
quantum effects in complex media and identify strategies for quantum imaging and communication through scattering environments.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0278947

I. INTRODUCTION exhibit strong correlations that are also scrambled when propagating
through a complex medium, resulting in a two-photon speckle.' '

When classical light propagates through a complex medium Over the past decade, experiments have shown that standard wave-
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such as white paint or biological tissue, it is scattered, producing
a random speckle pattern. In their seminal work," Vellekoop and
Mosk demonstrated that by shaping the incoming wavefront using
a spatial light modulator (SLM), the strong scattering could be over-
come, initiating the field of wavefront shaping.” Since then, the scope
of wavefront shaping has grown considerably, with advances in opti-
mization algorithms, feedback mechanisms, and a variety of shaping
modalities.”

Wavefront shaping has proven powerful for classical appli-
cations, including deep-tissue imaging and optical communi-
cations. Its extension to the quantum domain’ creates new
opportunities, particularly for quantum imaging and secure quan-
tum communications.” '* In particular, spatially entangled photons
produced by spontaneous parametric down-conversion (SPDC)
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front shaping tools can be applied directly to these two-photon
correlations.

In quantum communication schemes, one photon of an entan-
gled pair is typically retained at the transmitter while the other is
sent through a complex quantum channel. Several works'’~” have
studied this scenario, where only a single photon experiences scat-
tering. Since the classical and quantum light share the same spatial
modes, the scattering of classical light, a weak coherent beam, and
heralded single photons are all described by the same transmission
matrix, and a classical beacon could be used to find optimal phases
that restore the correlations.'” '’

In quantum imaging and related applications, both photons
may propagate through the complex medium.”” " In this case, the
phases that localize the correlations after the scattering differ from
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those that would focus a classical beacon beam,’ and therefore a
classical beacon cannot be used for feedback. One solution is to
use the weak two-photon correlations for feedback.”"***"** Alterna-
tively, several classical feedback strategies have been proposed: (a)
measuring the one-photon transmission matrix and inferring the
two-photon transmission matrix from it;"** (b) using the pump
beam for feedback in the case of thin diffusers;””**** or (c) employ-
ing an advanced wave beacon beam.’! The fact that a classical beacon
scatters differently from the two-photon state implies that the per-
formance bounds of wavefront shaping, derived for classical light,*
are not directly applicable to this quantum scenario.

In this work, we examine the fundamental limits of restor-
ing the correlations between entangled photons that both propagate
through a thick scattering medium. We show, both analytically
and numerically, that the optimal enhancement in the quantum
case differs from the classical enhancement and depends on sev-
eral factors, including the relative locations of the two detectors
and the plane at which the SLM is positioned. In particular, we
show that in certain symmetric scenarios, perfect compensation of
scattering is achievable, an effect we interpret as a form of dig-
ital optical phase conjugation. We further show that when the
SLM is placed after the scattering medium, the optimization prob-
lem resembles NP-hard problems. Nevertheless, numerical solu-
tions exhibit superior performance compared to classical shaping.
Notably, this includes instances where the optimized coincidence
rate at the target modes exceeds the total coincidence rate summed
over all modes before shaping. These results are determined by the
optimal shaping phases, regardless of the method used to obtain
them.

Il. RESULTS

We consider spatially entangled photons generated via spon-
taneous parametric down-conversion (SPDC).”® In SPDC, a strong
pump beam impinges on a nonlinear crystal, and with some prob-
ability, one pump photon is annihilated and two lower-energy
photons are created. Depending on the phase-matching conditions
of the nonlinear crystal, the generated photon pairs can be entan-
gled in their polarization, spectral, and spatial degrees of freedom.
Since this work focuses on spatial wavefront shaping, we simplify the
analysis by considering the case where the photons are indistinguish-
able and share the same polarization (type-I SPDC) and the same
frequency (degenerate SPDC). Under these conditions, we exam-
ine spatially entangled photons, whose state can be approximated
by |¥in) = \/%T\I ¥, ataf|vac), where af is the creation operator in the
transverse position x, [vac) denotes the vacuum state, and N is the
number of modes in the discretized space. Experimentally, this state
is obtained by weakly focusing the pump beam on the nonlinear
crystal, operating in the so-called thin crystal regime.”"”

We are interested in a scenario where both photons propagate
through a thick scattering sample, operating in the multiple scatter-
ing regime, where the sample thickness L is much larger than the
transport mean free path £*. This ensures complete randomization
of the transmitted light with no ballistic component. We also assume
the photons’ wavelength to be much smaller than £*, keeping us
far from the Anderson localization regime.’® We model the scatter-
ing medium by a transmission matrix T,” and consider two models
for T: (i) A random unitary matrix, which describes, for example,
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FIG. 1. The three configurations for wavefront shaping of spatially entangled
photons analyzed in this work. In all configurations, entangled photons are gen-
erated in a X(z) SPDC process (type-l), and then propagate through a scattering
medium (SM). Their correlations are detected using coincidence events between
two single-photon detectors (D,, Dg). (a) The onephoton shaping configuration,
where only one of the photons is shaped. (b) The two-photon illumination shaping
configuration, where the SLM shapes both photons before propagating through
the scattering medium. (c) The two-photon detection shaping configuration, where
the SLM is positioned after the scattering sample and shapes both photons. The
green dashed lines mark conjugate planes, and the dotted blue lines mark the far
field of these planes.

a lossless multimode fiber with strong mode mixing. (ii) A matrix
whose elements are independently and identically distributed ran-
dom variables drawn from a circular complex Gaussian distribution
(Gaussian IID),” representing a subspace of a strongly scattering
medium.*

As depicted in Fig. 1, we analyze three different configurations
for positioning an SLM to compensate for this scattering. In the
first configuration [Fig. 1(a)], the SLM is placed after the scatter-
ing medium and shapes only one of the photons. We refer to this
configuration as onephoton shaping (1P-S). In the second configura-
tion [Fig. 1(b)], the SLM is placed before the scattering medium and
shapes both photons. We call this configuration two-photon illu-
mination shaping (2P-IS). In the third configuration [Fig. 1(c)], the
SLM is placed after the scattering medium and shapes both photons.
We refer to it as two-photon detection shaping (2P-DS). In all three
configurations, we assume the SLM is placed in the image plane of
the input facet of the scattering medium and of the nonlinear crystal,
such that the two photons illuminate the same area on the sample,
and the detectors are placed at its far-field.

The goal of the wavefront shaping schemes we consider is to
maximize the probability to find the photons in two spatial modes «
and f3, corresponding to a coincidence event. For the three configu-
rations we consider, this probability is given by (see supplementary
material Sec. S1):
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where S is a diagonal matrix representing the operation performed
by the SLM in the pixel basis, and F is the discrete Fourier transform
operator, representing the propagation to the detectors plane in the
far-field.

To gain further physical intuition into these three configu-
rations, it is useful to interpret them using Klyshko’s advanced
wave picture.””*' "’ In this picture, the probability P for a coinci-
dence event between two single-photon detectors in a two-photon
setup is translated to a classical intensity measurement by sub-
stituting one of the detectors with a classical light source and
the nonlinear crystal with a mirror. The light emitted from this
source is directed back through the optical setup toward the mir-
ror and is then reflected to the second detector. According to the
advanced wave picture, the intensity measured at the second detec-
tor is proportional to the average coincidence rate observed in the
original two-photon experiment. In Fig. 2, we show the advanced
wave interpretation of the three configurations described in Fig. 1.
While the calculations yield the same expressions in both pic-
tures (see supplementary material Sec. S1), the advanced wave pic-
ture provides several physical insights that help interpret the three
configurations.

(a)

One photon
shaping

(b)

mirror

Two-photon
illumination
shaping

SLM
(c)
Two-photon

detection
shaping

FIG. 2. Depiction of the three analogous classical setups according to the
advanced wave picture. (a) The analogous 1P-S configuration, which is a clas-
sical wavefront shaping scenario in reflection geometry. (b) The analogous 2P-IS
configuration, where the light is scattered both before and after being shaped by
the SLM. (c) The analogous 2P-DS configuration, involving light impinging on the
same SLM twice: before and after the scattering medium. The green dashed lines
mark conjugate planes, and the dotted blue lines mark their far-field plane.
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A. One photon shaping (1P-S)

We begin by analyzing the 1P-S configuration, where only one
of the SPDC photons is shaped. As shown by the advanced wave
interpretation [Fig. 2(a)], this case is equivalent to a standard clas-
sical wavefront-shaping experiment in a reflection geometry, where
light traverses the medium twice. The problem thus reduces to max-
imizing the intensity of a classical coherent field emitted from mode
« and detected at mode .

The figure of merit we use to define the optimization quality
is the enhancement factor #. This is defined as the ratio between
the maximal coincidence probability P.g, achieved by optimizing
the SLM phases, and the spatially averaged coincidence probabil-
ity before optimization. As we show explicitly in the supplementary
material Sec. S2, for 1P-S and a phase-only SLM, the enhancement
is given by

Hip-s = 1+(N*1)g, (2)

where N denotes the number of modes in the system. This repro-
duces the well-known classical result of linear scaling in N with a
pre-factor of § for phase-only control.”

While the enhancement is the same for the unitary and Gaus-
sian IID cases, the peak-to-background ratio is different. In the
N > 1 limit, the peak in both cases is /N ~ 7/4. However, in the
unitary case, the background is 1 — 77/N, since the peak gets its power
from the background, while for Gaussian IID, the total background
power is higher.

B. Two-photon illumination shaping (2P-IS)

We now consider the 2P-IS configuration [Fig. 1(b)], where the
SLM shapes both photons before the scattering medium. The SLM is
typically placed in an image plane of the crystal to ensure the phase
mask S acts identically on both photons, as described in Eq. (1) by
SS. In the advanced wave counterpart [Fig. 2(b)], this corresponds to
a configuration in which the light is scattered both before and after
passing through the SLM. Here, the fact that the SLM is in the image
plane of the crystal implies that the light hits the SLM twice with
the same spatial distribution, effectively equivalent to a single pass
where each pixel induces a double phase.

By performing an analytical calculation similar to that of the
1P-S configuration (see supplementary material Sec. S2), we obtain

taprs = 1+ (N - 1)(%)2. 3)

For N > 1, the enhancement is lowered by a factor of 77/4 com-
pared to #,,_¢. This can be intuitively understood in the advanced
wave picture: in this configuration, the SLM is illuminated with a
speckle pattern with varying amplitude, so that some of its N pixels
contribute less effectively to the optimization, leading to a reduced
number of effective degrees of control.

1. Enhanced correlations by digital
optical phase conjugation

Although the 2P-IS configuration typically results in a lower
enhancement, a remarkable effect occurs when optimizing the prob-
ability P, that both photons are detected in the same spatial
mode, namely, when the transverse positions of the two detectors
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are identical. In this symmetric case, the two-photon correlation
enhancement is given by

nohs = N+b, )
where b =0 for the unitary case and b =1 for the Gaussian IID
case. Remarkably, the enhancement scales linearly with the number
of modes with a pre-factor of exactly 1, despite the use of phase-
only modulation. Before optimization, upon detection of a photon
in some mode a, the probability to detect its twin photon in some
specific mode is, on average, 1/N. After optimization, the probability
to detect the twin photon in mode « becomes unity. Notably, in the
unitary case, there is no residual background (1 - #/N = 0), mani-
festing the perfect enhancement achieved. Further details are given
in the supplementary material Sec. S2.

It is instructive to interpret the perfect correlations obtained
when the two photons are detected in the same mode as digital
optical phase conjugation in the advanced wave picture.** Perfect
correlations, which correspond in the advanced wave picture to
focusing all the light back toward the source, are obtained when the
phases applied by the SLM are the conjugate of the field incident on
it after passing through the scattering sample [Fig. 2(b)]. In this case,
the field after the SLM becomes the phase conjugate of the incident
field. By time-reversal symmetry, this results in all the light being
focused back toward the sources."

In contrast to typical digital optical phase conjugation config-
urations, where perfect time reversal requires precise control over
both the amplitude and phase of the scattered field, here perfect time
reversal is achieved using phase conjugation alone. This is possible
because, in the advanced wave picture, the SLM is placed after the
scattering medium. As a result, the amplitude of the field illumi-
nating the SLM is already correct, and only the phases need to be
conjugated. We emphasize that the SLM appears after the scatter-
ing medium only in the advanced wave picture. In practice, the SLM
shapes the two photons before they illuminate the sample. We refer
to this special configuration as 2P-IS(OPC).

C. Two-photon detection shaping (2P-DS)

Next, we consider the 2P-DS configuration, where the SLM
shapes the two photons after the scattering medium [Fig. 1(c)]. In
the advanced wave picture [Fig. 2(c)], the light now encounters the
same SLM twice, with random scattering occurring in between the
two encounters.

The advanced wave picture highlights that the 2P-DS poses
a significant optimization challenge: attempting to optimize the
SLM phases using standard iterative algorithms® fails because the
SLM pixels are no longer independent. The phase applied to one
pixel affects not only the light that is reflected from that pixel but
also the light that will impinge on other pixels when the beam
illuminates the SLM for the second time. In the supplementary
material Sec. S3, we show that maximizing the two-photon cor-
relations in the 2P-DS case can be mapped to a version of a
maximum quadratic program (MAXQP) or to finding the ground
state of an XY Ising model, which are known to be NP-hard
problems.” >

Despite this computational complexity, we use PyTorch’s auto-
grad engine for gradient-based optimization of phase patterns that
localize the correlations between two target modes, in a system
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with N = 512 modes. Full details are provided in the supplementary
material Sec. $4 and in the supplementary code.”” Unlike the 1P-S
and 2P-IS configurations, in this scenario our simulations reveal dis-
tinct behavior for unitary and Gaussian IID transmission matrices:

for the unitary case, we find a value of 11(U) ~ 0.89 - N, and for the

2p—DS
Gaussian IID case, our optimization yields a remarkable enhance-
ment of ’751?—)1)3 ~ 1.91-N, such that the coincidence rate between

the optimized modes exceeds the total coincidence rate before opti-
mization. This is possible since the shaping process could redirect
photons that would otherwise be scattered into unmeasured modes,
such as reflected channels in the case of a scattering medium, into the
measured ones. In both cases, the enhancement pre-factor slightly
increases with the system size N, as we discuss in the supplementary
material Sec. S4.

Self-consistent optimization is not a unique feature of the
2P-DS configuration and may also arise in the 2P-IS configuration,
for instance, when the SLM is not imaged onto the nonlinear crystal,
as we discuss in the supplementary material Sec. S5.

1. Enhanced correlations by digital
optical phase conjugation

Similarly to the 2P-IS configuration, also in detection shaping
we observe that maximizing the probability that both photons arrive
at the same detector increases the enhancement factor. For the uni-

tary case, we once again numerically achieve a perfect enhancement

of qggfgg = N. We interpret this as a more intricate version of digital

optical phase conjugation in the advanced wave picture [Fig. 2(c)].
In this picture, for the reflected field to be the time-reversed ver-
sion of the incident field, the reflection process at the mirror must
correspond to phase conjugation. First, we note that if the phases
arrive at the mirror plane with a flat phase, it will effectively act as
a phase-conjugating mirror, since the phase conjugation of a flat
phase is a flat phase. Similarly, if the field in the mirror plane is
real-valued, namely the phases are only 0 or 7, the mirror effec-
tively acts as a phase-conjugating mirror. Thus, the optimal phases
that the SLM finds in this configuration are such that the field at
the mirror plane is real (see Fig. S5). Since there are two possible
phases for each mode, there are 2N such solutions, and it is thus rela-
tively simple for the optimization process to find such a solution and
achieve perfect correlations. We refer to this special configuration as
2P-DS(OPC).

For Gaussian IID transmission matrices, the enhancement is

not bounded from above by N, and we find numerically an enhance-

ment of ng}?fgg ~ 4.6 - N. While we do not have a physical expla-

nation for the enhancement value in the Gaussian IID case, we
note that it is bounded by 012, where o) is the maximal singular
value of TT". Physically, o corresponds to the maximal intensity
transmission through the medium.*’

We summarize the enhancement pre-factors of the different
configurations in Fig. 3. Notably, it highlights that the 2P-DS con-
figuration puts forward a unique problem, where on one hand the
optimization is hard and self-consistent, but on the other hand
holds the potential for greatly improved performance, particularly
in the symmetric configuration. To complement these results, in the
supplementary material Sec. S6, we also analyze the case of a thin
diffuser.

10, 110801-4
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FIG. 3. Summary of the enhancement pre-factor for the five different analyzed configurations. The enhancements were calculated numerically by averaging over 200
disorder realizations, for a system with 512 modes. The error bars signify the standard deviation of the 200 realizations. The 1P-S, 2P-IS, and 2P-IS(OPC) configurations
present the same results for the unitary and Gaussian |ID cases, and agree with the analytical calculations of 77/4, (7/4)?, and 1, respectively. The 2P-DS and 2P-DS(OPC)
configurations are significantly different for the unitary and Gaussian IID cases. In the latter, the coincidence rate between the optimized modes exceeds the total coincidence

rate prior to optimization.

D. Incomplete control

In most practical applications, the number of modes control-
lable via the SLM is limited and is often less than the total number
of modes supported by the scattering medium. We denote this
as incomplete control and simulate how it influences the achiev-
able enhancement # in the different configurations. We define
the degree of control (DOC) as the ratio between the number of
controlled modes M (e.g., independent SLM pixels) and the total
number of modes considered in the system N. Figure 4 illustrates
the scaling of the enhancement pre-factor #/N as a function of
the degree of control for unitary and Gaussian IID transmission
matrices.

First, we analyze the unitary case. For the 1P-S configura-
tion, the enhancement exhibits a linear dependence on the DOC,
consistent with classical wavefront shaping results, where enhance-
ment scales linearly with the number of controlled modes (see
supplementary material Sec. S6).

The 2P-IS configuration displays nonlinear scaling. As shown
analytically in the supplementary material Sec. S6, the initial slope at
low DOC is 77/4. Since the enhancement pre-factor reaches (7/4)>
at full control (DOC = 1), the curve shows a decreasing slope,
indicating a diminishing gain in enhancement as the degree of con-
trol increases. Intuitively, at a low degree of control, the SLM has
large effective macro-pixels that average out the speckle illumina-
tion, effectively restoring a uniform beam condition akin to the 1P-S
configuration.

The symmetric 2P-IS(OPC) configuration also shows non-
linear scaling with a decreasing slope. As derived in the
supplementary material, the initial slope at a low degree of control is
7/2 ~ 1.57, while the enhancement pre-factor reaches 1 at full con-
trol. This initial slope is notably twice the 77/4 slope observed at low
degrees of control for the non-symmetric 2P-IS case. This factor-
of-two difference in the initial enhancement rate is reminiscent of

APL Photon. 10, 110801 (2025); doi: 10.1063/5.0278947
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coherent backscattering (CBS).” Standard CBS describes the
enhanced average intensity back-reflected into the incident mode
from a disordered medium, arising without any wavefront shaping,
due to constructive interference between pairs of reciprocal paths
inside the sample. Here, this constructive interference results in a
two-fold improvement of the enhancement factor at low degrees
of control, since in the advanced wave picture, the 2P-IS(OPC)
configuration corresponds to a CBS setting.”

Considering the unitary case, the 2P-DS configurations also
exhibit nonlinear scaling with a decreasing slope. For the symmetric
OPC case, this particularly efficient approach to high enhancement
can be intuitively understood by recalling that there are 2" valid
options for phases in the mirror plane that will all result in a perfect
enhancement. Thus, even when the control is incomplete, the exis-
tence of this vast solution space allows a fraction of these solutions to
remain approximately reachable, leading to the observed saturation
behavior at near-maximal enhancement even for DOC significantly
less than 1 (see Fig. S8).

Next, we consider the Gaussian IID case. The 1P-S, 2P-IS,
and 2P-IS(OPC) configurations exhibit scaling behaviors very sim-
ilar to their unitary counterparts: linear for 1P-S, and nonlinear
with a decreasing slope for both 2P-IS cases. However, the 2P-DS
configurations behave distinctly in the Gaussian IID case, showing
nonlinear scaling with an increasing slope.

Even though we do not have an analytic model for the
2P-DS configuration, we empirically perform a linear fit to the slope
of these configurations in the regime of low degree of control (see
Fig. S7). We observe that in both the unitary and Gaussian IID
cases, the initial slope of the symmetric 2P-DS(OPC) configura-
tion is approximately twice that of the non-symmetric counterpart.
This consistent factor-of-two difference reinforces the analogy to
an extended CBS-like effect influencing the initial optimization
efficiency.

10, 110801-5
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FIG. 4. Scaling of the enhancement pre-factor as a function of the degree of control, defined as the ratio DOC = M/N between the number of SLM pixels M and the number
of modes in the system N, for the analyzed configurations with unitary and Gaussian 11D matrices. Dashed straight lines connect the endpoints for each curve to guide the

eye regarding linear or nonlinear scaling. The results are shown for N = 512.

E. Non-maximally entangled state

The calculations and numerical simulations presented thus
far assumed that the generated SPDC photons are in a maximally
entangled state, |¥i,) = ﬁ > &I,&I, vac). However, in practice, the
W) o< JJ dq,dq;v
q, - q;*)|q,, q;), where v(q) is the angular spec-

state generated by the SPDC is given by’®”
L

(q, + gq;)sinc( i
trum of the pump beam, L. is the crystal length, k, is the wavenum-
ber of the pump beam, and q, and q; represent the transverse
momentum of the signal and idler photons. Using the Schmidt
decomposition,”™”” the two-photon state may be written as a sum
of K states, each composed of a tensor product between one-
photon states. The Schmidt rank K quantifies the entanglement
dimensionality.

Our analysis thus far assumed a plane-wave pump beam, such
that v(q) ~ 8(q) and a thin crystal such that sinc(flgp q,-q)
~ const. This results in a maximally entangled state with an infinite
Schmidt rank. When this state illuminates a sample with a finite size,
supporting N modes, we assume that it is truncated to the subspace
spanned by the modes of the sample and can therefore be described
by a maximally entangled state with Schmidt rank N.

To incorporate the effect of a finite pump profile and finite crys-
tal length, we invoke the advanced wave picture.”’*> To account for
the finite pump beam size, the crystal acts as a mirror whose reflec-
tivity at each position is proportional to the local pump amplitude.
The finite crystal length in the advanced wave picture is accounted
for by introducing a spatial filter that removes the angular compo-
nents that are not phase-matched in the SPDC process.’*’ Both
of these effects can be regarded as applying the appropriate spa-
tial filters to the two-photon state in the position (near-field) and
momentum (far-field) domains. In the supplementary material Sec.
S1, we show that this description can be generalized so that any
pure two-photon state can be mapped to a maximally entangled state
passing through a fictitious linear system.
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To analyze the case of non-maximally entangled states, we
need to consider the three configurations 1P-S [Fig. 2(a)], 2P-IS
[Fig. 2(b)], and 2P-DS [Fig. 2(c)], with the appropriate spatial filters.
In the 1P-S and 2P-DS configurations, these filters are sandwiched
between two passages through the scattering sample. We can, there-
fore, attribute the filters to a new, fictitious, filtered sample. The
problem then reduces to the propagation of a maximally entangled
state with Schmidt rank K = N through the fictitious sample, allow-
ing us to apply the results obtained above for maximally entangled
states, with the caveat that the sample properties (e.g., being unitary
or Gaussian IID) may be modified by the filters.

In contrast, in the 2P-IS shaping configuration, we cannot use
the fictitious sample model because the SLM is also sandwiched
between the two interactions with the sample. Here, the spatial
filters qualitatively change the optimization: the finite pump pro-
file will result in a non-uniform illumination on the SLM, which
is known from classical wavefront shaping to slightly affect the
enhancement.” Furthermore, the spatial filtering will cause the light
shaped by an SLM pixel on the first pass to affect the light hitting its
neighboring pixels on the second pass, resulting in a self-consistent
optimization problem. This effect can also be understood in the
direct SPDC picture, without invoking the advanced wave picture:
the spatial filter accounts for the finite correlation width of the two
photons upon illumination of the SLM. A correlation width that is
comparable to the SLM pixel size leads to a non-convex optimiza-
tion landscape, as demonstrated in Ref. 32. Notably, the width of
the spatial envelope and the angular width of the spatial filter can be
traded off by magnifying or de-magnifying the SPDC light between
the crystal and SLM planes.

1. Separable state

An extreme limit of the spatial filtering is when the widths of the
pump angular spectrum and of the sinc function are equal, result-
ing in a separable state, and a Schmidt rank K = 1.°° In this limit, it
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is convenient to analyze the system in the direct SPDC picture and
not in the advanced wave picture. Since the two photons are now
in a separable state, a speckle pattern will also be observed in the
single counts (i.e., intensity) at the detectors’ plane, and the coinci-
dence measurements are equivalent to multiplying the intensities at
the two detector locations.'®*” In the 1P-S configuration, maximiz-
ing the two-photon correlations is equivalent to performing classical
wavefront shaping. Enhancing the intensity at only one of the detec-
tors yields the classical enhancement of § ~ (7/4)N. This is also the
total enhancement of the correlations, since the speckle pattern at
the second detector is unaffected. In the advanced wave picture, this
is equivalent to shaping light that is propagating through a scattering
medium with a single-mode pinhole in the middle—a system that
has been of interest in Ref. 60, due to the long-range correlations
that emerge in such a system.

In the 2P-DS configuration, the SLM affects the two speckle
patterns that arrive at the two planes of the detectors identically.
Therefore, if both detectors are at the same location (OPC configura-
tion), focusing to one detector will also focus the light to the second

detector, resulting in an enhancement of 11§<2}1)C) = (n/4-N)? to the
correlations. If the two detectors are located at different transverse
positions, one-half of the SLM pixels could be used to focus at one
position and the other half to focus at the second position, resulting
in a total enhancement of 77,,_, = (/4 - N/ 2)? to the correlations.
In the 2P-IS configuration, assuming that the low Schmidt rank
originates from a tightly focused pump, and given that the crystal is
imaged onto the SLM, only a single SLM pixel will have an effect,
resulting in no enhancement. If, however, the SLM is placed in the
far field of the crystal, such that all SLM pixels are active, the results
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<
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are identical to the 2P-DS configuration. Since for K = 1, the signal
we are focusing is the single counts, and this is like classical wave-
front shaping where it does not matter whether the SLM is placed
before or after the scattering medium. We refer to this configuration
with the SLM at the far field of the crystal as 2P-IS-ff.

2. Numerical simulation

While an exact analysis for the dependence on the two-photon
state requires a full field simulation that takes into account the
finite pump width and crystal dimensions, we roughly simulate
a finite Schmidt rank K by blocking N — K modes at the crys-
tal plane and optimizing coincidence events. This corresponds in
the experiment to a top-hat pump beam of varying width and a
thin crystal. The results are depicted in Fig. 5 for N = 512 for both
the unitary and Gaussian IID models. At low Schmidt ranks, the
2P-IS-ff and 2P-DS configurations result in equal enhancement fac-
tors, with the expected ql(gic) and 77, values for K = 1, which are
quadratic in N.

This changes as K grows, and for K = N, the 2P-DS returns
to the enhancements discussed in Sec. II, which are approximately
linear in N (see supplementary material Sec. S4). The 2P-IS-ff con-
figuration reaches reduced enhancements at K = N, since when the
SLM is placed in the far field of the crystal, pixel pairs that are sym-
metrically placed across the optical axis are degenerate, resulting in a
lower amount of effective SLM pixels.*” Indeed, the results for K = N
in the 2P-IS-ff configurations are identical to the results for the 2P-IS
configurations with a degree of control of 0.5. The 1P-S configura-
tion allows an enhancement of ~ /4 - N independent of K. The full
simulation code is available in Ref. 52.
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FIG. 5. The ratio of the enhancement to the number of modes #/N as a function of the Schmidt rank K of the two-photon state. The 2P-IS-ff configuration is similar to the
2P-IS configuration (SLM between the crystal and the scattering medium), but with the SLM in the far field of the crystal. For low K, focusing the coincidence rate also
focuses the single counts, yielding an enhancement that scales quadratically with N. For high K, the single counts are uniform, and the enhancement scales linearly with N.
The results are shown for both the unitary and Gaussian 1D cases with N = 512, on a log-log scale.
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I1l. DISCUSSION

In this work, we have shown that, unlike in classical wavefront
shaping, the specific placement and configuration of the SLM and
detectors play a crucial role in determining the achievable enhance-
ment when shaping entangled photons that both propagate through
a thick scattering medium. Beyond their intrinsic interest, config-
urations where both photons traverse the medium also serve as a
platform for applications that use complex media to implement tai-
lored quantum circuits*®' ™" and to study fundamental aspects of
quantum light in complex media.”** %’

We found that two-photon wavefront shaping gives rise to a
rich variety of behaviors with no direct counterpart in the classical
regime. Depending on the configuration, two-photon correlations
can either enhance or reduce performance compared to classical
shaping and can exhibit fundamentally new features. For example, in
the 2P-IS configuration, a natural symmetry of the two-photon mea-
surement enables perfect compensation of scattering when focus-
ing both photons to the same spatial mode, despite relying on
phase-only control.

In the 2P-DS configuration, where photons impinge twice on
the SLM, leading to correlated pixel control, we have found a sig-
nificant boost in enhancement. This improvement, however, comes
at the price of a fundamentally more challenging, self-consistent
optimization problem. Similar self-consistent optimization prob-
lems arise in advanced classical systems, such as coherent confocal
microscopy through scattering media® and tunable metasurface
reflect-arrays inside chaotic microwave cavities.”” Interestingly,
while presenting a challenge for optimization, the interdependence
of pixels has been leveraged in optical information processing
and neural networks, enabling nonlinear operations using linear
optics.”””’

The emergence of complex feedback mechanisms in two-
photon coincidence measurements highlights new opportunities to
exploit quantum correlations. Observing these effects experimen-
tally will be subject to the standard challenges of wavefront shaping
at low light levels, such as low collection efficiencies and limited
signal-to-noise ratios. Nevertheless, wavefront shaping of single and
entangled photons has been shown to be feasible over the past
decade.'**"**’1* Our analysis of the robustness of the observed per-
formance under incomplete control and non-ideal quantum states
points to two additional challenges that are more unique to the
observation of the fundamental bounds discussed in this work,
while at the same time emphasizing the experimental feasibility of
demonstrating them.

We believe that these findings provide important insights into
the foundations of quantum wavefront shaping and offer practi-
cal considerations for shaping entangled photons through complex
media, with potential applications ranging from quantum imaging
to secure communications.

SUPPLEMENTARY MATERIAL

See the supplementary material for analytical derivations,
exploration of other configurations, and further details regarding
the numerical simulations, which may be found in the attached
document.
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