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The transport of light in disordered media is governed by open transmission channels, which enable
nearly complete transmission of the incident power, despite low average transmission. Extensively studied
in diffusive media and chaotic cavities, open channels exhibit unique properties such as universal spatial
structure and extended dwell times. However, their experimental study is challenging due to the large
number of modes required for control and measurement. We propose a multimode fiber cavity (MMFC)
as a platform to explore open channels. Leveraging mode confinement and finite angular spread, MMFCs
enabled full channel control, yielding an 18-fold power enhancement in experiment by selectively exciting
an open channel with a transmission of 0.90� 0.04. By analyzing 100 transmission matrices of MMFC
realizations, we observed a bimodal transmission eigenvalue distribution, indicating high channel control
and low losses. The scalability of MMFCs, combined with long dwell times and potential for nonlinear
phenomena, offers new opportunities for studying complex wave transport.
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When coherent light illuminates thick scattering sam-
ples, most of the incident power is backscattered. However,
theory predicts that, with a sufficiently large illumination
area, one can identify an incident wave front that enables all
light to be transmitted through the sample via the so-called
open transmission channels [1,2]. Advances in wave front
shaping have allowed precise control over optical wave
fronts [3–5], enabling the selective excitation of open
channels [6,7]. Over the past decade, several unique
properties of open channels have been uncovered, includ-
ing correspondence with quasinormal modes [8–11], uni-
versal spatial structure [7,12–16], and association with
extended dwell times inside the sample [10,17,18].
Increased dwell times in disordered samples enhance

light-matter interactions, boost nonlinear effects, and
improve environmental sensitivity, key features for sensing
applications. Thus, studying the existence of open channels
in systems relevant to sensing and nonlinear optics, such as
optical fibers, is desirable.
Owing to the similarity between transmission through

multimode fibers and scattering samples, analogies
between these systems have been extensively explored
over the past decade, particularly in the context of speckle
statistics and wave front shaping [19–22]. A key advantage
of multimode fibers is that all their modes can be controlled
using a spatial light modulator (SLM) [23,24]. In standard
optical fibers, all channels transmit light completely.
However, by introducing reflective coatings to create a

multimode fiber cavity (MMFC), most incident light is
backreflected, and the concept of open channels becomes
applicable. Without mode mixing, an open channel of an
MMFC simply corresponds to a guided mode whose
propagation constant matches the Fabry-Pérot resonance
condition. However, in the presence of strong mode
mixing, the existence and properties of open channels
are more intricate.
In this Letter, we demonstrate that MMFCs with strong

mode mixing can indeed support open channels. We show
that, despite strong coupling between guided modes, it is
possible to selectively excite an open channel and achieve
an 18-fold enhancement in transmitted power through the
cavity. We find that the transmission eigenvalue distribution
is bimodal, reflecting the high control of MMFC channels
and its minimal losses. These findings establish MMFCs as
a versatile platform for studying and controlling complex
optical modes extending beyond open channels, such as
recently discovered reflectionless scattering modes [25,26].
Open channels are found by measuring the transmission

matrix of the sample T, which relates the input and output
fields by ψ⃗out ¼ Tψ⃗ in [27]. The singular value decompo-
sition of T, or equivalently, the eigenvectors of the
Hermitian matrix T†T, define the transmission eigenchan-
nels of the sample T†Tv⃗n ¼ τnv⃗n, where the eigenvalues τn
correspond to the transmission coefficients. To selectively
excite the most open channel, the wave front of the input
field is tailored to match the wave front corresponding
to the eigenchannel v⃗1 with the highest transmission
coefficient τ1. The two key ingredients for realizing open
channels are, therefore, coherent detection of the light*Contact author: yaron.bromberg@mail.huji.ac.il
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transmitted through the fiber and precise control over the
amplitude and phase of the incident wave front.
To experimentally study the transmission eigenchannels

of an MMFC, we used a 1 m long step-index fiber with
a core diameter of 25 μm and a numerical aperture of
NA ¼ 0.1, coated with reflective coatings with reflectivity
ρ ¼ 0.88. We placed the MMFC in one arm of a Mach-
Zehnder interferometer [Figs. 1(a) and S1]. A tunable laser
(λ ¼ 632 nm) with a long coherence length (> 100 m)
enabled interference of multiple round trips in the cavity.
The amplitude and phase of the incident field were tailored
using a phase-only SLM in combination with a spatial filter
for amplitude modulation [28] (see Supplemental Material,
Sec. A [29]). The transmitted field interfered with a
reference beam in an off-axis holography configuration,
and both output polarizations were imaged onto a camera.
We normalized the reconstructed output field so that its
total power matched the output power measured by a
calibrated photodiode monitoring the transmitted light
(see Supplemental Material, Fig. S1 and Sec. B [29]).
We measured the MMFC’s transmission matrix T by

illuminating the fiber core with a set of 242 tilted beams
(121 per input polarization). The tilts were generated by
applying equally spaced linear phase ramps on the SLM,
spanning the angular bandwidth defined by the NA of the
fiber. For each input, the fields of the two output polar-
izations were rearranged into a one-dimensional vector,

comprising one column of the transmission matrix. To
compensate for thermal drifts, we adjusted the laser wave-
length by a few femtometers after every 10 input modes
(see Supplemental Material, Sec. A, for further details on
the transmission matrix measurement [29]). The decom-
position of the transmission matrix into the fiber mode
basis is depicted in Fig. 1(b), exhibiting strong mode
mixing with 0.8 of the energy located in the off-diagonal
elements (see Supplemental Material, Sec. C for details on
the fiber mode decomposition [29]).
The eigenvalues obtained by diagonalizing T†T are pre-

sented in Fig. 2.We observed thatNopen ¼ 4 channels exhibit
transmission coefficients higher than τc ¼ ð1þ π2=4Þ−1 ≈
0.288, a threshold of order unity that we use to define an open
channel in MMFCs (see Supplemental Material, Sec. G1
[29]). A noticeable gap at the 67th transmission coefficient
suggests that the MMFC supports N ¼ 67 modes. This is
largely consistent with the measured transmission matrix
of the fiber without reflective coatings, which exhibits 34
guided modes and two leaky modes per polarization (see
Supplemental Material, Sec. E [29]). The average trans-
mission, calculated as the mean of the first 67 transmission
coefficients, is hτi ¼ 0.065� 0.001. The optical conduct-
ance, defined as the product of the average transmission
and the number of channels, is g ¼ Nhτi ≈ 4.3. This value
is close to the number of open channels we observed, in
agreement with the threshold τc used to define open channels
(see Supplemental Material, Sec. G1 [29]).
The transmission properties of the MMFC are governed

by the statistics of the transmission coefficients, particularly
(a) (b)

FIG. 1. Schematic of the experimental setup and measured
transmission matrix. (a) The transmission matrix of the multi-
mode fiber cavity (MMFC) is measured by placing it in one arm
of a Mach-Zehnder interferometer. The polarization-dependent
complex field at the output of the fiber is measured for a set of
input modes excited using the SLM. The wave front required to
excite an open channel is computed from the transmission matrix
and then realized using the wave front shaping apparatus.
A spatial filter is used to convert the phase-only SLM to an
amplitude and phase modulator. A half-wave plate (λ=2) is used
to control the input polarization, while a Wollaston prism (WP)
before the camera (CMOS) separates horizontal (H) and vertical
(V) polarizations. BS: beam splitter. (b) The absolute value
squared of a measured transmission matrix, presented in the fiber
mode basis, exhibiting strong mode mixing. The left (right)
quadrants correspond to measurements in the horizontal (vertical)
input polarizations, while the top (bottom) quadrants correspond
to measurements in the horizontal (vertical) output polarizations.
In each quadrant, 0.8 of the energy is concentrated in the off-
diagonal elements.

FIG. 2. Transmission coefficients τn obtained by diagonalizing
T†T for an experimentally measured transmission matrix T.
Four open channels with transmission coefficients higher than
τc ¼ 0.288 are observed. Only the 70 most significant trans-
mission coefficients are presented. The noticeable gap between
channels 67 and 68 indicates that the MMFC supports 67 guided
modes. The dashed horizontal line marks the average trans-
mission hτi ¼ 0.065� 0.001. The small gap between τ1 and τ2
points to a small offset in the off-axis reconstruction of the
complex field, most likely arising from inhomogeneities in the
reference beam. The uncertainties are on the order of 1%, smaller
than the marker size (see Supplemental Material, Sec. D [29]).
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their probability density function (PDF) fτ. For diffusive
samples, the PDF exhibits a bimodal shape with peaks at
τ ¼ 0 and τ ¼ 1 [36]. Observing this bimodal distribution
requires near-complete control over all channels. With only
partial control, the transmission matrix elements become
uncorrelated, and the PDF converges to the Marčenko-
Pastur distribution, which is bounded by a maximal trans-
mission coefficient of 4hτi [27,37]. The fact that we
observed four open channels with transmissions exceeding
this bound indicates that we had sufficient control to
measure a transmission matrix with correlated elements,
resulting in a PDF that deviates from the Marčenko-Pastur
distribution. Nevertheless, to test whether our degree of
control is sufficient to resolve the intrinsic PDF of the
MMFC, we measured it directly.
To obtain the PDF experimentally, we measured multiple

realizations of the MMFC’s transmission matrix by lever-
aging its spectral sensitivity. Specifically, we recorded
100 transmission matrices at wavelengths spaced by
20 fm, exceeding the MMFC’s spectral correlation width
of ≈10 fm (see Supplemental Material, Sec. F and Fig. S3
[29]). Over this wavelength span, the change in the fiber’s
V number is on the order of 10−6; thus, the number
of guided modes remains unchanged, and the changes in
their spatial profiles are negligible. For each matrix, we

computed the transmission coefficients and constructed
their histogram (Fig. 3). The resulting PDF remains finite
at τ ≈ 1 (fτ ≈ 10−2), reflecting a nonzero probability of
obtaining open channels with nearly unit transmission.
To further analyze the measured distribution of the

transmission coefficients, we modeled the transmission
through the MMFC as interference of multiple round trips
within the cavity. Each round trip can be represented by
r̂1TT

0 r̂2T0, where T0 and TT
0 represent the transmission

matrix of an uncoated fiber and its transpose, respectively,
and the matrices r̂i¼1;2 describe reflection from the two
facets of the fiber [Fig. 4(a)]. Analogously to a Fabry-Pérot
cavity, the total transmission matrix of the MMFC is
given by the infinite series of round trip contributions
(for additional details, see Supplemental Material,
Sec. G1 [29]):

T ¼ t̂2
1

1 − T0r̂1TT
0 r̂2

T0t̂1; ð1Þ

where t̂i¼1;2 represents the transmission matrices through
the coated facets of the MMFC. When the facets are
perfectly orthogonal to the propagation axis of the fiber, the
reflection and transmission matrices of the facets remain
diagonal in the fiber mode basis r̂i ¼ ffiffiffiffi

ρi
p

1, t̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρi

p
1.

However, slight facet angles, often present in connectorized
fibers [38], introduce coupling between the modes,

FIG. 3. The probability density function (PDF) of the trans-
mission coefficients, fτ, was obtained from the histogram of the
transmission coefficients of an ensemble of 100 matrices. The
experimental data (circles) are compared to the expected dis-
tribution of an ideal MMFC (red line), the incomplete channel
control (ICC) model (orange line), and the lossy model (purple
line). The measured data follow the ideal distribution for τ ≲ 0.8
and then gradually decay, reaching τ ¼ 1 with a finite probability.
Comparison to the ICC model, which assumes full control over
the input modes and control over m2 ¼ 0.95 of the output modes,
demonstrates that the MMFC provides a high degree of control
over both input and output modes. Additionally, comparison to
the lossy model, which assumes that the four highest-order modes
experience transmission of t0 ¼ 0.75 while all other modes do
not experience loss, suggests that coupling to a few leaky modes
can explain the deviation of the measured data from the ideal
MMFC model.

(a)

(b) (c) (d)

T

FIG. 4. Transmission matrix and mode mixing in an MMFC.
(a) Schematic of the MMFC. Each round trip is described by
r̂1TT

0 r̂2T0, where T0 and TT
0 are the transmission matrix of an

uncoated fiber and its transpose, respectively, and r̂1; r̂2 denote
the matrices describing the reflection from the facets. (b) Typical
measured transmission matrix T0 of a 1 m long uncoated step-
index fiber supporting N ¼ 34 modes per polarization. The
matrix exhibits weak mode mixing, with 0.8 of the energy
concentrated in the diagonal blocks of the degenerate modes.
(c) Numerically computed reflection matrix r̂1, assuming a facet
angle of θ ¼ 5 × 10−3 rad, obtained by decomposing a linear
phase tilt into the fiber modes. (d) Computed transmission matrix
of the MMFC using Eq. (1), for T0 from (b) and r̂i from (c). All
matrices depict the absolute value squared of one polarization
quadrant of the full transmission matrix.
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manifested by nondiagonal reflection matrices with mean
reflectivity ρi [Fig. 4(c)].
Measurements of the transmission matrix T0 for an

uncoated fiber exhibit weak mode mixing, with only 0.2
of the energy concentrated in the off-diagonal elements of
the matrix [Fig. 4(b)]. In contrast, the measured trans-
mission matrix of the MMFC shows strong mode mixing,
with 0.8 of the energy in the off-diagonal elements
[Fig. 1(b)]. To investigate the origin of the higher mode
mixing, we plugged into Eq. (1) the measured transmission
matrix T0, where we eliminated the effect of mode-
dependent loss associated with measurement of T0 by
setting its singular values to unity. This computation yields
a transmission matrix with 0.5 of the energy in the off-
diagonal elements. By introducing to the model a slight tilt
of the fiber facets, the mode mixing is further increased. For
typical tilt angles obtained in optical fibers (θ ¼ 5 × 10−3)
[38], mode mixing increased significantly, with 0.7 of the
energy in off-diagonal elements [Fig. 4(d)].
Using the model described by Eq. (1), incorporating

mode mixing from tilted facets, we computed analytically
the PDF of the transmission coefficients within the frame-
work of random matrix theory (see Supplemental Material,
Sec. G1 [29]). As in scattering samples, it exhibits a
bimodal distribution (Fig. 3, red curve), where the exact
form of the PDF depends on the coating reflectivity. For
the experimental reflectivity ρ ¼ 0.88, the measured PDF
follows the MMFC model up to transmission values
of τ ∼ 0.8.
The slight deviation between measured and model PDFs

can be used to estimate the MMFC channel control, as
incomplete wave front control or losses typically reduce the
number of open channels. In contrast,modemixing alone does
not affect the transmission eigenvalue distribution, as it
corresponds to unitary transformations that preserve the
eigenvalues ofT†T (seeSupplementalMaterial, Sec.G1 [29]).
We, therefore, considered two simplified single-

parameter models. In the incomplete channel control (ICC)
model, we assumed a lossless MMFC, while allowing for
an incomplete measurement of its transmission matrix (see
Supplemental Material, Sec. G2 [29] and Ref. [37]). The
best agreement between the ICC model and the exper-
imental data was obtained by assuming full control over all
incident channels and 95% control over the output channels
(Fig. 3, orange curve). In the loss model, we assumed the
MMFC is lossy due to leaky fiber modes but that its
transmission matrix was perfectly measured (see
Supplemental Material, Sec. G3 [29]). Consistency with
the experimental data was achieved by assuming that the
four highest-order modes of the fiber were leaky modes
with a transmission of t0 ¼ 0.75, corresponding to an
average loss of less than 0.015 per channel (Fig. 3,
purple curve). This assumption aligned with a direct
measurement of the transmission matrix of a similar fiber
without reflective coatings (see Supplemental Material,

Sec. E [29]). Neither model perfectly fits the data, but
both suggest high channel control and low overall loss.
In scattering media, open transmission eigenchannels

exhibit significantly longer dwell times compared to the
average value [10,17,18,39]. To investigate whether this
property of open channels also holds in MMFCs, we
performed numerical simulations of light propagation in
our MMFC setup and computed the expectation values of
the dwell time operator,Q¼−i½T†ðdT=dωÞþR†ðdR=dωÞ�,
where R is the reflection matrix of the MMFC [18] (see
Supplementary Material Sec. H [29] for details). The
computation reveals that the dwell time of the open channel
(110 ns) exceeds the mean dwell time (7 ns) by more than
an order of magnitude and that the dwell time of trans-
mission eigenchannels increases monotonically with their
transmission coefficients (see Fig. S6).
The MMFC platform’s high control enables selective

excitation of transmission eigenchannels and study of their
spatial structure. To excite an open channel of the system,
we tailored the incident wave front to match the input v⃗1
that corresponds to the channel with τ1 ≈ 1 shown in Fig. 2.
Since mode mixing in theMMFC is polarization-dependent
[see Fig. 1(b)], the incident field corresponding to v⃗1
consisted of two different polarization components.
However, as the SLM can shape only one polarization at
a time, we first sent the horizontal polarization component
v⃗1 into the fiber and measured the output field ψ⃗1;H. At the
output, both polarization components were measured
simultaneously, so ψ⃗1;H includes both components, with
the subscript H indicating the input polarization. Next, we
rotated the input polarization state by 90°, sent the vertical
component of v⃗1, and measured the output field ψ⃗1;V .
Finally, we coherently combined the measured output fields
to obtain the total output field for simultaneous excitation
of both input polarizations: ψ⃗1 ¼ ψ⃗1;H þ ψ⃗1;V , as depicted
in Fig. 5.
To directly measure the transmission coefficient of the

excited open channel, we normalized the total output
power, kψ⃗1;Hþ ψ⃗1;Vk2, by the total input power pHþpV,
measured with a calibrated photodetector monitoring the
input beam before entering the MMFC (see Fig. S1 [29]).
We denote the transmissions measured directly from the
ratio of output and input powers by τ̃n, to distinguish them
from the transmission coefficients τn computed from the
singular value decomposition of the measured transmission
matrix. The measured transmission coefficient is given by
τ̃1 ¼ kψ⃗1;H þ ψ⃗1;Vk2=ðpH þ pVÞ. For the open channel
depicted in Fig. 5, we obtained τ̃1 ¼ 0.90� 0.04, repre-
senting an 18-fold enhancement compared to the average
transmission hτ̃i ¼ 0.049� 0.001 measured for a set
of random inputs. The measured transmission eτ1 is
about 10% lower than the transmission coefficient τ1
computed from the transmission matrix, but the 18-fold
enhancement relative to the average intensity remains
consistent in both cases. This discrepancy likely arises
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from inaccuracies in the transmission matrix measurement
and phase instabilities.
Figure 5 shows that the spatial distribution of the output

fields ψ⃗1;H and ψ⃗1;V are highly correlated, despite their
orthogonal input polarizations. This spatial overlap enables
efficient constructive interference, which is required for
open channels with near-unity transmission coefficients.
Similarly, multiple round trips in the cavity are expected to
interfere constructively at the fiber output. In a perfect fiber
without mode mixing, guided modes maintain their trans-
verse shape, and open channels correspond to the guided
modes whose propagation constants satisfy constructive
interference at the output of the fiber. However, in the
presence of mode mixing, none of the modes retain their
transverse shape preventing good spatial overlap of multi-
ple round trips. Indeed, when we coupled the guided modes
of the fiber (LPlm) to the MMFC, the highest transmission
we observed was τ̃LP ¼ 0.17, far below τ̃1. MMFC open
channels uniquely retain transverse shape across round trips
despite mode mixing (see Supplemental Material, Sec. G1
[29]). While we cannot directly probe the transverse shape
after each round trip, we observed indirect evidence of this
feature by tuning the wavelength of the laser by a few
femtometers. For open channels, the intensity quickly
dropped, while the transverse shape remained unchanged.
The fact that the output intensity pattern did not vary

indicates that the wavelength detuning was too small to
significantly change the relative phases of the transverse
modes. Thus, only the global phase accumulated over
different round trips can affect the total output intensity.
This behavior is analogous to that of Fabry-Pérot cavities,
where wavelength detuning alters the relative phase
between successive round trips.
In this Letter, we investigated open channels and their

distribution in MMFCs. By selectively exciting an open
channel, we achieved a transmission of τ̃1 ¼ 0.90� 0.04,
corresponding to an 18-fold enhancement over the mea-
sured average transmission hτ̃i ¼ 0.049� 0.001. To gather
statistical insights, we measured multiple transmission
matrices at different wavelengths and extracted the PDF
of the transmission coefficients. The obtained PDF exhib-
ited a nonzero probability of channels with τ ¼ 1, though
slightly lower than predicted by the ideal bimodal distri-
bution. This deviation allowed us to estimate the degree of
control and loss in our system, suggesting that we con-
trolled over 0.95 of the MMFC modes.
MMFCs enable high control by confining channels with

a finite angular spread, making them easily addressable
with an SLM. This control revealed strong correlations
between orthogonal input polarizations in near-unit trans-
mission channels, highlighting their origin in optimal
constructive interference and long dwell times.
MMFCs offer exceptional scalability, with the number of

channels readily extendable to thousands by increasing the
core size and numerical aperture. This scalability, com-
bined with long dwell times, compatibility with extended
fiber lengths, and strong confinement that enables oper-
ation in the nonlinear regime, positions MMFCs as a
powerful platform for studying wave transport and non-
linear dynamics in complex media. In addition, the long
dwell times of the MMFC transmission channels and their
sensitivity to the fiber’s conformation and surroundings
suggest that MMFCs could also be valuable for developing
advanced fiber based sensing schemes, including multi-
parameter sensing, for example, in fiber cavity ring-down
spectroscopy [40,41].
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FIG. 5. Selective excitation of the highest transmission channel.
The first transmission eigenchannel v⃗1 was decomposed into its
two input polarization components, v⃗1;H and v⃗1;V , which were
excited sequentially. The left column shows the measured output
intensity, jψ⃗1;Hðx; yÞj2, for excitation of the horizontal compo-
nent, while the central column shows the output intensity,
jψ⃗1;Vðx; yÞj2, for excitation of the vertical component. The right
column depicts the intensity for the coherent superposition,
jψ⃗1;Hðx; yÞ þ ψ⃗1;Vðx; yÞj2. The top row represents the horizontal
polarization component of the output, and the bottom row
represents the vertical polarization component. The output
intensity patterns were normalized by the power measured at
the input of the MMFC, ensuring that the sum over all pixels
corresponds to the transmission of the pattern. The transmissions
for ψ⃗1;H, ψ⃗1;V , and ψ⃗ ¼ ψ⃗1;H þ ψ⃗1;V are τ̃1;H ¼ 0.60,
τ̃1;V ¼ 0.35, and τ̃1 ¼ 0.90, respectively.
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