Sensitivity of Lamb waves in viscoelastic polymer plates to surface contamination Spytek, J., D. A. Kiefer, R. K. Ing, C. Prada, J. Grando, and J. De Rosny Ultrasonics 149, 107571 (2025)
Résumé: Detecting surface contamination on thin thermoformed polymer plates is a critical issue for various industrial applications. Lamb waves offer a promising solution, though their effectiveness is challenged by the strong attenuation and anisotropy of the polymer plates. This issue is addressed in the context of a calcium carbonate (CaCO3) layer deposited on a polypropylene (PP) plate. First, the viscoelastic properties of the PP material are determined using a genetic algorithm inversion of data measured with a scanning laser vibrometer. Second, using a bi-layer plate model, the elastic properties and thickness of the CaCO3 layer are estimated. Based on the model, the sensitivity analysis is performed, demonstrating considerable effectiveness of the A1 Lamb mode in detecting thin layers of CaCO3 compared to Lamb modes A0 and S0. Finally, a direct application of this work is illustrated through in-situ monitoring of CaCO3 contaminants using a straightforward inter-transducer measurement.
|
|
Extreme wave skewing and dispersion spectra of anisotropic elastic plates Kiefer, D. A., S. Mezil, and C. Prada Physical Review Research 7, no. 1 (2025)
Résumé: Guided wave dispersion is commonly assessed by Fourier analysis of the field along a line, resulting in
frequency-wave-number dispersion curves. In anisotropic plates, a point source can generate multiple dispersion
branches pertaining to the same modal surface, which arise due to the angle between the power flux and the
wave vector. We show that this phenomenon is very particular near zero-group-velocity points and occurs in all
directions independent of the degree of anisotropy. Stationary phase points accurately describe measurements on
a monocrystalline silicon plate.
|
|
Computation of leaky waves in layered structures coupled to unbounded media by exploiting multiparameter eigenvalue problems Gravenkamp, H., B. Plestenjak, D. A. Kiefer, and E. Jarlebring Journal of Sound and Vibration 596 (2025)
Résumé: We present a semi-analytical approach to compute quasi-guided elastic wave modes in horizontally layered structures radiating into unbounded fluid or solid media. This problem is of relevance, e.g., for the simulation of guided ultrasound in embedded plate structures or seismic waves in soil layers over an elastic half-space. We employ a semi-analytical formulation to describe the layers, thus discretizing the thickness direction by means of finite elements. For a free layer, this technique leads to a well-known quadratic eigenvalue problem for the mode shapes and corresponding horizontal wavenumbers. Incorporating the coupling conditions to account for the adjacent half-spaces gives rise to additional terms that are nonlinear in the wavenumber. We show that the resulting nonlinear eigenvalue problem can be cast in the form of a multiparameter eigenvalue problem whose solutions represent the wave numbers in the plate and in the half-spaces. The multiparameter eigenvalue problem is solved numerically using recently developed algorithms. Matlab implementations of the proposed methods are publicly available.
|
|
3D Single-Molecule Super-Resolution Imaging of Microfabricated Multiscale Fractal Substrates for Calibration and Cell Imaging Cabriel, C., R. M. Córdova-Castro, E. Berenschot, A. Dávila-Lezama, K. Pondman, S. Le Gac, N. Tas, A. Susarrey-Arce, and I. Izeddin ACS Applied Materials and Interfaces 17, no. 6, 9019-9034 (2025)
Résumé: Microstructures arrayed over a substrate have shown increasing interest due to their ability to provide advanced 3D cellular models, which open up new possibilities for cell culture, proliferation, and differentiation. Still, the mechanisms by which physical cues impact the cell phenotype are not fully understood, hence the necessity to interrogate cell behavior at the highest resolution. However, cell 3D high-resolution optical imaging on such microstructured substrates remains challenging due to their complexity as well as axial calibration issues. In this work, we address this issue by leveraging the geometrical characteristics of fractal-like structures, which serve as axial calibration tools and modulate cell growth. To this end, we use multiscale 3D SiO2 substrates consisting of spatially arrayed octahedral features of a few micrometers to hundreds of nanometers. Through optimizations of both the structures and optical imaging conditions, we demonstrate the potential of these 3D multiscale structures as an alternative to electron microscopy for material imaging but also as calibration tools for 3D super-resolution microscopy. We used their multiscale and known geometry to perform lateral and axial calibrations in 3D single-molecule localization microscopy (SMLM) and assess imaging resolutions. We then utilized these substrates as a platform for high-resolution bioimaging. As a proof of concept, we cultivate human mesenchymal stem cells on these substrates, revealing very different growth patterns compared to flat glass. Specifically, the spatial distribution of cytoskeleton proteins is vastly modified, as we demonstrate with a 3D SMLM assessment.
Mots-clés: 3D single-molecule localization microscopy; bioimaging; multiscale material; fractal-like microstructures; calibration; material imaging
|
|
Techniques for imaging optic disc vasculature in glaucomatous optic neuropathy: A review of the literature Aubert, T., R. Lecoge, P. Bastelica, M. Atlan, M. Paques, P. Hamard, C. Baudouin, and A. Labbé Journal Francais d'Ophtalmologie 48, no. 2, 104369 (2025)
Résumé: The anatomy and vasculature of the optic nerve head are complex and subject to numerous variations. The main risk factor for glaucomatous optic neuropathy is elevated intraocular pressure, but many other factors have been identified. A vascular component seems to play an important role in the pathogenesis and/or progression of glaucomatous optic neuropathy, either under the influence of ocular hypertension or as an independent risk factor, particularly as in normal tension glaucoma (NTG). Reduced ocular blood flow has been identified as a risk factor for glaucoma. Numerous instruments have therefore been developed to explore the vasculature of the optic nerve head and to try to better understand the changes in blood flow in the optic nerve in glaucomatous optic neuropathy. In this review, we provide an update on the various means of imaging the vasculature of the optic nerve head, from angiography to the most modern techniques with angiographic OCT and laser Doppler holography. Using the results found in glaucomatous optic neuropathies, we will explore the close link between reduced ocular blood flow and the development or progression of glaucoma. A better understanding of this pathophysiology opens the door to improved management of our glaucoma patients.
|
|
Ultrasound-induced dense granular flows: a two-time scale modelling Martin, H. A., A. Mangeney, X. Jia, B. Maury, A. Lefebvre-Lepot, Y. Maday, and P. Dérand Journal of Fluid Mechanics 1004 (2025)
Résumé: Understanding the mechanisms behind the remote triggering of landslides by seismic waves at micro-strain amplitude is essential for quantifying seismic hazards. Granular materials provide a relevant model system to investigate landslides within the unjamming transition framework, from solid to liquid states. Furthermore, recent laboratory experiments have revealed that ultrasound-induced granular avalanches can be related to a reduction in the interparticle friction through shear acoustic lubrication of the contacts. However, investigating slip at the scale of grain contacts within an optically opaque granular medium remains a challenging issue. Here, we propose an original coupling model and numerically investigate two-dimensional dense granular flows triggered by basal acoustic waves. We model the triggering dynamics at two separated time scales - one for grain motion (milliseconds) and the other for ultrasound (10μs) - relying on the computation of vibrational modes with a discrete element method through the reduction of the local friction. We show that ultrasound predominantly propagates through the strong-force chains, while the ultrasound-induced decrease of interparticle friction occurs in the weak contact forces perpendicular to the strong-force chains. This interparticle friction reduction initiates local rearrangements at the grain scale that eventually lead to a continuous flow through a percolation process at the macroscopic scale - with a delay depending on the proximity to the failure. Consistent with experiments, we show that ultrasound-induced flow appears more uniform in space than pure gravity-driven flow, indicating the role of an effective temperature by ultrasonic vibration.
|
|