Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas Córdova-Castro, R. M., B. Van Dam, A. Lauri, S. A. Maier, R. Sapienza, Y. De Wilde, I. Izeddin, and V. Krachmalnicoff Light: Science and Applications 13, no. 1 (2024)
Résumé: High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm. We measure, in the gap of the nanoantenna, decay rates that are almost 30 times larger than on a glass substrate. By comparing experimental results with numerical simulations we show that this large enhancement is essentially radiative, contrary to the case of plasmonic nanoantennas, and therefore has great potential for applications such as quantum optics and biosensing.
|
|
Reflection Measurement of the Scattering Mean Free Path at the Onset of Multiple Scattering Goïcoechea, A., C. Brütt, A. Le Ber, F. Bureau, W. Lambert, C. Prada, A. Derode, and A. Aubry Physical Review Letters 133, no. 17 (2024)
Résumé: Multiple scattering of waves presents challenges for imaging complex media but offers potential for their characterization. Its onset is actually governed by the scattering mean free path ℓs that provides crucial information on the medium microarchitecture. Here, we introduce a reflection matrix method designed to estimate this parameter from the time decay of the single scattering rate. Our method is first validated by an ultrasound experiment on a tissue-mimicking phantom before being applied in vivo to a human liver. This Letter opens important perspectives for quantitative imaging of heterogeneous media with waves, whether it be for nondestructive testing, biomedical, or geophysical applications.
|
|
Variation in Granular Frictional Resistance Across Nine Orders of Magnitude in Shear Velocity Gou, H. X., W. Hu, Q. Xu, J. Chen, M. J. Mcsaveney, E. C. P. Breard, R. Q. Huang, Y. J. Wang, X. P. Jia, and L. Zhou Journal of Geophysical Research: Solid Earth 129, no. 7 (2024)
Résumé: Determining the shear-velocity dependence of dry granular friction can provide insight into the controlling variables in a dry granular friction law. Some laboratories believe that the quality of this study is at the forefront of the discipline for the following reasons. Results suggest that granular friction is greatly affected by shear-velocity (v), but shear experiments over the large range of naturally occurring shear-velocities are lacking. Herein we examined the shear velocity dependence of dry friction for three granular materials, quartz sand, glass beads and fluorspar, across nine orders of magnitude of shear velocity (10−8–2 m/s). Within this range, granular friction exhibited four regimes, following a broad approximate “m” shape including two velocity-strengthening and two velocity-weakening regimes. We discuss the possible physical mechanisms of each regime. This shear velocity dependence appeared to be universal for all particle types, shapes, sizes, and for all normal stresses over the tested range. We also found that ultra-high frequency vibration as grain surfaces were scoured by micro-chips were formed by spalling at high shear velocities, creating ∼20 μm diameter impact pits on particle surfaces. This study provides laboratory laws of a friction-velocity (μ-v) model for granular materials.
|
|
Variation in Granular Frictional Resistance Across Nine Orders of Magnitude in Shear Velocity Gou, H. X., W. Hu, Q. Xu, J. Chen, M. J. Mcsaveney, E. C. P. Breard, R. Q. Huang, Y. J. Wang, X. P. Jia, and L. Zhou Journal of Geophysical Research: Solid Earth 129, e2023JB028241 (2024)
|
|